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e 1. Introduction .

3

::'.- This is the second in a sequence of reports that present results of studies of N
. . . . . . ¢

:’.} electromagnetic properties of finite, three-dimensional spherical systems | 1]*. Al- YN
"'.: though this particular geometry is an extremely simple idealization, many of the -
e results obtained in the course of the research are quite general. Indeed, they pro- <

vide considerable insight into the electromagnetic characteristics of real systems

", RS
- of much more complicated geometry and structure which do not readily lend E
& themselves to analytic resolution. A
MY 4
e : 2
In the study presented here, we investigated one important effect of concentrically i
{,f enclosing a spherical lossless dielectric within an ideal conducting spherical .:'.:
‘ cavity. This system is clearly of intrinsic importance on its own. In addition, it ’:":
provides an opportunity to understand, by comparison with a previously reported "
L study [ 1], how the effect of loading a spherical cavity with a dielectric sphere dif- ":}'
fers from imbedding a concentric spherical conductor in that cavity. Furthermore.
the studies of such systems of very simple geometry will subsequently serve as re- By
liable reference points for studies of systems of successively increasing ;',f
complexity. E
: N : »
The electromagnetic property we focus on in this report is the set of resonant fre- D
quencies of the dielectrically loaded conducting spherical cavity. The dependence :::'
of these physical variables on size and dielectric strength will be presented. In :::
section 2 we briefly present the formal development for the eigenvalue problem of :::
the system. In a previous report |1| we gave a more complete formal develop- &
ment. The details of the geometry are given in section 2 also. Transverse-electric o
(TE) and transverse-magnetic (TM) modes (i.e., relative to the radial direction) ':
are separable and uncoupled for this system. Section 3 contains the resonances o
for the TE modes of the system as a function of radius of the interior dielectric. o~
Effects of varying the dielectric strength for the eigenvalues of the TE modes are !
included in this section. Corresponding results for the TM modes are given in -'_::'
section 4. Finally, in section § we present a summary discussion of all the results. ‘_Z-';._
3
”
o
—_— '.“
References are listed at end of repori. :'.:
'
7 ;;
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2.1

Figure 1. Schematic
of the conducting
spherical cavity con-
taining a concentric
spherical dielectric.

CRASTN N -\-‘- -\- -‘- ~ \..': AN

2. System Geometry and Formal Developments

System Geometry

Figure 1 illustrates the geometry of the system undergoing investigation.
It consists of a simple spherical conductor of radius a containing a con-
centric lossless dielectric sphere of radius b and dielectric constant €,.

The remaining volume contains a lossless dielectric of dielectric constant
€,. The relative dielectric strength is denoted by €,, where

€, =E,/€,. (1)

We shall in this report consider only the case where the magnetic per-
meability is the same for both dielectrics; i.e., 4, = u,.

Quantities related to the region between the outer boundary of the inner
dielectric sphere and the conductor will be denoted by the index 1, either
as a subscript or superscript. The variables related to the volume occupied
by the inner sphere will similarly be denoted by the index 2.

Concentric
dielectric Conducting sphere
load sphere

Arbitrary point
within cavity

Cavity dielectric
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2.2

Formal Derivation of TE Mode Eigenvalue Relation
The Debye potential for the TE mode is of the form

Yun 0,0)0(r) , forbsr<a
(b,,m r)= @ )
Ynm(0,0)9,'(r) , forO<r<b
and satisfies
(vz—yf)q,,,,(r) =0, forb<r<a (3a)
and
(Vz—fz)<b,,m(r)=0 , for0<r<b 3b)
where
Yi =jk =j V& O . “4)

Since the angular part is well-known, we shall only explicitly consider the
radially dependent part of equation (2), which is taken in the form

o 0 { Or) =A% +8V kv 7) L b<r<a
w (r)=

0P (hr) =in(2r) 0<r<b

where we have introduced the modified spherical Bessel functions in
equation (5). Note that the coefficient of ¢f,2) has been chosen as unity for
convenience. Applications of the boundary conditions of the fields at r =
a and r = b will then determine the coefficients Afl') and Bf.') and establish
the eigenvalue relation as a function of g, b, €,, and €,. The general ex-
pressions for the field components in terms of the Debye potential for the
TE modes are given by

(5)

E,.om(r) =0 (6a)
L \
Ep.pm (F)=— 7sin@ 56 [rd)nm (rl] (6b)
1 0
Ee:mn(r) = 7 36 [rd),,,,,(r)] , (6C)
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1 1 @
Ho:xm(l')—jf‘@ 7 oroe (7 Dun ()]
and
H (r)———l i [r ®pm(r)]
o;nm jou r 9rod nm

Each of these field components is of the form

19, , b<rs<a

[ I();nm (I')E I l():n.m (e’¢){

()n

We then can separate variables and rewrite equations (6) as
Er;nm (l‘) =0,

Eg;,)l(r) ,b<r<a

Eg.nm (r)= Eg.um (0,0) ,
e ° {Eﬁ)l(r)‘ L0<r<b

Ega(r) . b<r<a

Eg.pm (r)=E, . (6,9) ,
° o {Eﬁﬁ,(r) L 0Sr<b

Hg,)l(r) ,b<sr<a

Hem ()= Hy . B0)] ,
H2(r) ,0<r<b

Hf,!_,),(r) .b<r<a
He;nm (r)= Ho:nm (9v¢)

n

and

10

(2 (1) ,0sr<h

H2 ) L 0sr<b

(6d)

(6e)

(6f)

)

(8a)

(8b)

(8¢)

(8d)

(8e)
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le(r) ,b<r<a
Hom (1) = Houm (6,0) 2) . (8)
Hgn(r) 0<r<bh

Clearly we need only consider the radially dependent factor in all further
derivations in this report. Thus we shall write:

E,,(r)=0. (9a)
Eo ( Eg;,,l(r) =¢f"’(r) ,b<r<a oh
0. r) = ) ( )
" EQ(r) =62 () , 0sr<b
Ef;:,),(r) ,b<r<a
EO:nm(r)= Eo:nm (9,¢) 2) , (9¢)
ED(r) ,0sr<a
‘ H(r")l(r) ,b<r<a
Hr:nm (r)zHr;nm (9,¢) @ , (9d)
Hr:n(r) , 0<r<b
H&L(r) ,b<r<a
Ho.pm (r) = He.pp, (6,0) (2) s (Ye)
HY () . 0<r<b

and

HD () , b<r<a

HO:nm (r) = HO:nm (6,¢) (i) . (99
Hon(r) .0<r<a

These can be further expanded to

E,..(r)=0, (10a)

ED =) . b<r<a
Egin(r)= (10b)

Eif:,),(f) =¢£,2)(’) .0<r<a

Eo;n (r) = EO:M (f) , (1(x)
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D = A ’E_ ¢ ()
H(,;,,(r) N i _m 1_‘ [virel (vir)]
Hr:n(r) =< _ ; _
£ 4
Hf,),(r) = ™ m -1 [erq):.z’ (Y2 ’”)]

(0
Hon) =\ i 'Yl]" d(;inr) [nrenl
1 .
=\/ l% W [nro) (nn]

& 1 d
W Yar d(var)

. ) \‘% y:lr [2rei” (an)]

Hoa(r) = <

Hgn(r) = [vrod (1n]

and
Ho;n(r) =H9;n(r) ,

where we have introduced the notation

d .
al.\(b(.\)l:l.up(x)] .

(10d)

(10e)

(10f)

Now let us explicitly consider applying the boundary conditions. At the
dielectric intertace, both the tangential electric field and the tangential
magnetic field are continuous across at r = b. From equations (9b) and

(e), we obtain then the pair of relations
Apin(Nb) + B ka(1b) =in(V2h)

and

CIPREI I I

A A AT A A T A A N A N A A A B A I e R A A

-

(11)

DI

o

TEL
s »
ALY

«

g
e

1";‘@,

xx
P
N

5 %

5
g e

<

®

,
OO
LA

.""»"a
e

5

&
l-“
1

I,I'
LY Y
[N A

e T T 2 e S (U
S

rrL L
&

Iy
'.A‘O'l . v -
h g 45 ALS

ok

+
.I

G NN T St
‘.“'.’ 4
EX A AR

4

y
o

¥
“~

4
NN Y
RO o

o o e

L NN
"A o

s '-;)

1"'_

.,,
’

.
L/
XX

L4
‘c"l

1

Selsels
Py
et [y -".‘ o)

"
h}

A



!i‘ <,
35? 5
X - 1
oy .
et
by A [Mbin(b)] "+ B, [N bka (M b)] "= [V2hin(V2b)] . (12) N
‘ This pair of equations is readily solved to give
N AY =y hl in(Y2D) . kn (V1 h) 1 (3 o
p " [V-5in (b)) [Vibka(Ni B)]” Y
.* " o,
and -
s ::
o (N1 b in (Y2 2
i oo -
0 g '—"Ylbl n'(YI ) ’ n.(YZ ) ’ I . (4 7
(Mbia(ib)] " . [Y2bin(Y2h)] ;
," ] V
2' : where we have used the Wronskian relation to simplify the results. The ‘#’
'.: coefficients have thus been determined in terms of known quantities.
&
_ Next we apply the boundary condition at the conducting surface: namely,
- the tangential electric field vanishes at r = a. This gives us by
W o,
& (n; (n N »
.': An In (Yl U) + Bn kn(Yl d) =0 . Ry \
By
o : . : ®
~ Upon substituting into this relation from equations (13) and (14) for the N
- coefficients and rearranging, we obtain one form of the eigenvalue rela- ':-:
- tion for the TE modes: o
i .’:.
o, .{:
' in(20) Y @) = [V2hin(r20)] AV @b) =0 . (15) y: §
I/ ::\
. o
::" This is the relation whose roots, y,a, give the system TE eigenvalues. The '\
~ auxiliary functions introduced in equation (15) are defined as follows: I,: ‘
'.F" [
s () iy : ®
a A @b)=in(Yia) ky (Vb)) = in(ib) ka(Via) - (16) 3
A
~ « , . . ) -
-: ]" ((I,h) E'n(YI")IYlhkn(Ylh)l -kn(YI")lYlh‘n(Ylh)l . “7) :.l:
-" :.:.i
s In section 3 we shall continue with the considerations of the TE modes. L
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2.3

Formal Derivation of TM Mode Eigenvalue Relation

For the TM modes, the Debye potential is of the fonm

Y,un (6.9) \Vi,“(r) , forb<r<a ,
\an (r)=

(18)
Ymn(9.¢)\v(,,2) (r) .forO0<sr<b ,
which satisfies the differential equation:
(Vz—yf)‘{‘,,m(r):O . forb<r<a (192)
and
(V2 —Y%)‘P,,,,,(r) =0, forOsr<a . (19b)

Once again we observe that the angular part is well-known. Hence we
only explicitly display the radially dependent part. This is

\yf‘”(yl r) =CL”i,,(y, r) +Dfl”k,,(y, ry , forb<rsa
Yal(r) = (20)

‘l’?)(YZ’) =iy (Y27) , forO<r<b .

Again the coefficient of the inner Debye potential has been taken as unity
for convenience. Application of the boundary conditions for the fields at
the conductor and the dielectric interface will as before explicitly evaluate

the coefficient Cf.” and Df,” and generate the eigenvalue relation for the
TM modes.

The general formal expressions for the TM mode field components in
terms of the Debye potential ,,, (r) are

Hr;nm(r) =0, (2la)
1 d
Hom (M) = 7555 36 [ ¥an (D] (21b)
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Hynm(8) == 2 [P ¥om ()] | @le)
1 092 2
E..im(r) =75~€ 372 =Y Ir'¥am(r)] (21d)
11 @
Eo;,,m(l') —T(E 7 m [r‘l’,,,,,(r)] , (21e)
11 9t
Eom (F) = 0¢ 75in® 0rde [r'¥um(r)] . (21)

Again observe that each of the field components in equations (21) are of
the form

()0, b<rs<a
| I():nm(r) =| l():nm(e’q’) ‘

[13,() , 0sr<b

and just as we did for the TE components we rewrite equations (21) as
follows:

H,.pm (r) =0 (22a)

H((,'.,),(r) ,b<r=<a

Ho.nm (r) = Ho,pn (0.0) (;) (22b)
Hg,(r) , 0<r<b

He\(r) , b<r<a

Honm (1) = Ho;nm (9’4’){ o (22¢)
H¢;n(’) ,0<r<h

1
Ef,.,)‘(r) , b<r<a

Er;nm (r) = Er;nm (69¢) {E(é) (r) 0 <r< h (22d)

g.z,(r) , b<r<a

E
EO:nm (r)= Ee;,.m (0,¢){ (,;) (22¢)
Ee;n(r) , 0<r<b
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and
E&(r) ,b<r<a
Eg;un (1) = Eginm (0,9) 2 . (22f)
Eﬁ,m(r) ,0<r<h
Extracting the radially dependent part we have
Hr;n(r) =0, (23a)

Hagn () =v,(r) . b<r<a,
Hon() = ) @) (23b)
Hgn(r) =¥ (ny2r) , 0<r<b ,

H¢m(r) =H0:n(’) (230)

fE“) (r) _ E’_‘_ d2

% _ _ 3]
€ _d(y,r)2 1_ [virv, mn] ., b<r<a,
Er;n(’) =< (23d)

2 -_-'\’ﬁ- L 2)
LE(M(r) € _W l_ [erv® (rr)] . 0<r<b

r
] .
Eg)(r) = \/ t—: Wr [vrvl’mn] -, b<r<a,
Fontr) =4 -
=\ = [erv®mn] . 0 sr<b
\
Egn(r) =Egp(r) . (23f)

Next we apply the boundary conditions. The tangential components of the
electric and magnetic fields are continuous across the dielectric interface
atr = b. Then from equations (23b) and (23d) we obtain, respectively, the
pair of simultaneous equations

CV i1 b) + DV by (V1 b) = in(12b) (24)
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Solving this pair of equations we obtain, after some rearranging and using .'f‘- '
the Wronskian. the coefficients :::_'_;.
i'l (YZ h) A ku (Yl h) ‘ '
R N .6 o
g » hin(Y2h) [nbka(mb)|’ .:‘:E:
N
Y
1 in(YI h) ’ in (YZ h) : ..
n(“ - 27) -y
Tn YI h , . b E_I b . b . ’ l.- E
Nnhia(nb) . £2|Y2 in(120)) o
A.P‘-
o
At the conducting surface r = g, the tangential components of the electric OO
field vanish. This gives us the relation 5.3
oY
P main(na) +D [V1ake(vra))” =0 . (28) %
A
ol
If we substitute into this the expressions for the coefficients from equa- % 3
tions (26) and (27), we obtain, after some rearranging, one form of the K ,‘:,“
eigenvalue relation for the TM modes of the system: oYY,
i
]
& in (D) T (@h) + [1abin(b) TV (ba) =0 . (29) SR
r‘:'-.‘"\
In equation (29) we introduced the additional auxiliary function EE
T~
ESRY
T @by = yais(ua)] (Vb (b))’ (30) =3
- (Wb in (U] (Viaka(ri@)] " . o
R
The TM eigenvalues were found by solving equation (29) for its roots y,a. \'
We shall continue the discussion of the TM modes in section 4. ::3:':
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3. The TE Eigenvalues
3.1 introduction
Before presenting the TE eigenvalues, we must first establish some

conventions.

We introduce the notation

R=bhla . a0
Using the identities
2 b
Y2 b Ei a T4 =‘/€_r Rya

and
_b
Nnb=_na=Rkna,

we rewrite equations (15) through (17) as follows:

in(Ve, Ry1a) Y (@.Ra) —¢,RY @ in(Ne, RY1a) A (@,Ra) =0 , (32)
where
A (ab) = AP (@.Ra) =in(Y1a) ka(RY10) ~in(RT1 @) kn(Vr1 @) . (33)
and

Y (a,b) =Y"(a.Ra)

=in(Na)[Rnaka(RV1a)] "~ ka(ma)[RVra in(RV10)] " . G4
Clearly, for fixed values of €, and R we can consider y,a as the variable
in equation (32) and solve for those values of the variable that satisfy
equation (32). These values we call the "eigenvalues” for the TE modes.
Since the dielectrics within the cavity are lossless and the outer cavity
wall is a perfect conductor, all the roots of equation (32) are purely im-
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aginary. Thus, the TE eigenvalue spectrum for each value of n will be a o) vl$
doubly infinite discrete set of ordered real numbers, each of which we !
denote by kf,:,)a where / kf:v) (a) is a root of equation (32) for fixed n (by s
allowing y,fp = -k,zlp), and e
s,
;\"&.
8)) m . - A
k,lpa<knp,(a)forp<p,pandp-1,2,.... NN
(e A
Further each value kf,:,,)a is a function of the relative dielectric strength, E
€,, and of the ratio of inner dielectric radius to outer cavity radius, R: f::-:-_}e
=)
x
[ AR
K)a=k) (e R)a . (35) -
S
. . L s
First we consider two limiting cases: ::_. L
» The inner dielectric has b = 0. In this limit the eigenvalues are exactly (S
the same as those for the well-known spherical cavity (2], filled : "
homogeneously with dielectric €;. Thus, for each n the kf,:,) a are found S
. . 1) - ",."
from the roots of i, (}‘1 a) =0. e
., /
* The inner dielectric, €,, fills the entire cavity, sothat b=a (or R = 1). .
In this limit we find the eigenvalues y‘,”a by merely taking those al- o7
ready obtained for the cavity filled with dielectric of strength €, and A
dividing by Ve,. That s to say, Ay
:-'..f\-
() - \/_ N p_ -
k' (R=0)a = I/N& k, (R=1)a.
np np NN
T
'?'.‘_-"
Clearly, no more effort is required to obtain the TE eigenvalues when the :';:::
. . . . . . . e
inner dielectric sphere has zero radius than in the other limit when the in- NN
ner dielectric has expanded to fill the cavity completely. - ).'
. . . S e
We note that if €, > 1 (i.e., the inner dielectric constant exceeds the outer, e
surrounding, dielectric constant), the eigenvalues, in general, shift .-';}’-:;
: 13 . ,’. -
downward as the inner sphere fills the cavity. P
.2
A A
This is of course to be expected. (However, it still remains to be seen -2
how the TE eigenvalues behave in between these limits.) In the situa- ::;-:f_
tions where €, < 1 (i.e., the dielectric constant of the inner sphere is less :\f_
than that of the surrounding dielectric in the cavity), the reverse behavior N ;

19




3.2

is of course to be expected. That is, when the inner sphere fills the
cavity, the TE eigenvalues ‘f:"a take on the values that are well-known
for the cavity with a homogeneous dielectric in its interior. As the inner
sphere shrinks in radius, the TE eigenvalues reduce to this latter set mul-
tiplied by the factor 1/VE, > 1. Hence, we now observe that in the ab-
sence of the inner dielectric sphere, all the TE resonance frequencies are
shifted to lower values. (Again, we have yet to see the behavior in the in-
termediate region.)

We now proceed to examine the behavior of the TE eigenvalues as a
function of the radius of the concentric dielectric sphere in the cavity for
several representative choices of dielectric strength. Though other repre-
sentations can be construed, we choose to keep the relative dielectric
strength, €,/€,, fixed, and we solve equation (32) for the eigenvalues, y,q,
while varying the normalized inner radius, h/a. The solutions in this rep-
resentation group themselves naturally into families of curves in accor-
dance with the second subscript, p. We shall present the solutions so
grouped into these families.

The TE Eigenvalues for ¢_= 3.00

The first detailed case we shall consider is that for which the inner
dielectric sphere has a dielectric constant of €, = 3.00g,. Note that €, is
assumed to be the dielectric constant in the cavity in the absence of the
concentric dielectric sphere.

In figure 2 the results obtained from equation (32) for kfll,’ (R:&,=3.00)a
are shown plotted against R for the family p = | and n ranging from | to
5. Table 1(a) contains numerical values for these eigenvalues. Examina-
tion of these kf,'l)(R;e,)a curves shows the following behavior between
the limiting cases discussed above. For a given value of the index n, the
eigenvalues at first decrease in value slowly as the normalized inner
sphere radius, R, grows. The greater the index n, the slower this decrease
in eigenvalue becomes and the larger the range in R over which this in-
itial behavior persists. Immediately following this characteristic initial
behavior with increasing radius b (or equivalently R), a speed-up in the
rate of change of kgl)a occurs. This increase in the rate at which the
eigenvalue decreases becomes more marked as n increases. There is a
clearly defined knee in the kfz'l’ a eigenvalue trajectories for n > 1 marking
where the curve departs from the slowly varying to the quickly varying
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B e g g

0.4

0.2

0.1

AATIO OF RADIUS OF INTERNAL DIELECTRIC SPHERE TO CAVITY RADIUS R = b/a

CONDUCTING SPHERE OF RADIUS a
CAVITY DIELECTRIC £
CONCENTRIC DIELECTRIC SPHERE

RADIUS b
DIELECTRIC CONSTANT ¢, = 3¢,

1 L L 1 1 J

Figure 2. TE eigenvalues kf,l,
nally loaded with a concentric dielectric sphere of radius b and strength €, = 3€,.

' 6 ) 10 12 1 16 18
1
THE TE EIGENVALUES K\ (R: €02

) (R:€, = 3)a for the spherical cavity of radius a filled with dielectric €, inter-

behavior. For large n this knee becomes quite a sharp bend. Following
these noteworthy characteristics the kf,‘l)a trajectories show a slowing up
in the rate of decrease of the eigenvalues as the inner sphere continues to
grow. For large R values, corresponding to a high factor of filling of the
cavity by the inner dielectric sphere, we again observe a very slow
change in the eigenvalues as R grows further towards unity, As R
reaches unity, the eigenvalues reach their limiting values of 1/V3 times
their initial values. Clearly, three distinct regimes are evident from the
kfl'l’ (R:€,=3) a trajectories. These correspond to the presence of a small,
intermediate, or large concentric inner dielectric sphere.

The set of TE eigenvalue trajectories, kfl]l) (R:€,), raises two questions.
First, why does the eigenvalue remain nearly constant for the higher n
values over such a substantial range of R? Second, why does it then
change so rapidly with increase in size of the dielectric sphere in the inte-
rior? Clearly this behavior will be even more pronounced for even higher
values of n. The answers to these questions can be found in an examina-
tion of the corresponding spatial distribution of the field components
within the dielectrically loaded cavity. This subject will be taken up in
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Table 1a. Numerical Values of the TE Eigenvalues . (R:€, = 3)a for
the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4 n=5
0.05 4.49338 65.76346 6.98783 8.18256 9.35581
0.10 4.49254 5.76343 6.98793 8.18256 9.35581
0.20 4.46441 5.75970 6.98749 8.18251 9.35581
0.30 4.27463 5.69606 6.97091 8.17856 9.35491
0.40 3.83541 5.31497 6.74779 8.07928 9.31677
0.50 3.38457 4.66134 5.97362 7.30558 8.64409
0.60 3.04328 4.10949 5.19990 6.30710 7.42375
0.70 2.81017 3.71817 4.63497 5.56076 6.49309
0.80 2.66886 3.46968 4.26308 5.05552 5.84923
0.90 2.60509 3.34950 4.07203 4.78186 5.48385
0.95 2.59570 3.33051 4.03971 4.73248 5.41376
Table 1b. Numerical Values of the TE Eigenvalues k', (R:€, = 3)a for
the Spherical Cavity Loaded Internally with a Dielectric Sphere
R=b/a n=1 n=2 n=3 n=4 n=5
0.05 7.72486 9.09501 10.41712 11.70491 12.96653
0.10 7.71219 9.09434 10.41709 11.70491 12.96653
0.15 7.61736 9.08326 10.41601 11.70481 12.96652
0.20 7.26888 8.99890 10.40211 11.70273 12.96623
0.25 6.70702 8.61623 10.29108 11.67880 12.96135
0.30 6.25514 7.91051 9.74735 11.46473 12.90377
0.35 6.01878 7.32347 8.88154 10.59698 12.34333
0.40 5.94320 7.01957 8.24572 9.64212 11.17173
0.45 5.83663 6.93209 7.97131 - 9,08310 10.28875
0.50 5.90684 6.92584 7.92209 8.93074 9.96407
0.55 5.78584 6.87104 7.90644 8.92085 9.93401
0.60 5.58018 6.69032 7.76864 8.82638 9.87332
0.65 5.34200 6.42117 7.48287 8.53538 9.58448
0.70 5.10996 6.13349 7.14235 8.14328 9.14047
0.80 4.72953 §.63503 6.52371 7.40152 8.27184
0.90 4.50832 5.32483 6.11855 6.89681 7.66396
0.95 4.46713 5.26212 6.03067 6.78049 7.51630
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Table 1¢. Numerical Values of the TE Eigenvalues kﬁ,',’ (R;e, =3)afor J_f:
the Spherical Cavity Loaded Internally with a Dielectric Sphere :: :,:
S
R=b/a n=1 n=2 n=3 n=4 :E’J.:
0.05 10.90192 12.32290 13.69802 15.0397 S%;:f
0.10 10.82516 12.31732 13.69769 15.03965 =
0.15 10.26354 12.21370 13.68510 15.03826 T
0.20 9.43374 11.46032 13.48429 15.00451 A
0.25 9.15424 10.48578 12.33261 14.44791 ;5:?'
0.30 9.13449 10.21737 11.43087 12.94811 U
0.35 9.01077 10.20009 11.29319 12.41148
0.40 8.61039 9.99714 11.24205 12.38336
0.45 8.14505 9.49576 10.84570 12.14966
0.50 7.82181 8.99353 10.23540 11.50694
0.55 7.70064 8.68985 9.75206 10.87014
0.60 7.69066 8.61488 9.54641 10.50728
0.65 7.60805 8.59006 9.52819 10.44599
0.70 7.38682 8.40977 9.39927 10.36375
0.75 7.10426 8.10593 9.08477 10.04735
0.80 6.82694 7.78215 8.71681 9.63658 &
0.90 6.41015 7.26823 8.10480 8.92541 N
0.95 6.31397 7.14057 7.94314 8.72761 -
0.99 6.29566 7.11489 7.90888 8.68359 e
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Table 1d. Numerical Values of the TE Eigenvalues
KD (R, = 3) a for the Spherical Cavity Loaded
Internally with a Dielectric Sphere

LT R % e et ™ NN s S a® oS oYV WS Y TV

R=b/a n=1 n=2 n=3
0.05 14.05819 15.51439 16.92362
0.10 13.74719 15.48531 16.92143
0.15 12.59739 14.86023 16.82536
0.20 12.30726 13.57811 15.49753
0.25 12.23821 13.41956 14.58338
0.30 11.66648 13.23988 14.53831
0.35 11.04040 12.48532 14.04369
0.40 10.87308 11.92911 13.18152
0.45 10.82319 11.85081 12.84483
0.50 10.46800 11.69163 12.80069
0.55 9.97096 11.19225 12.39661
0.60 9.60650 10.68693 11.80285
0.65 9.49097 10.41708 11.38032
0.70 9.46447 10.38642 11.28030
0.75 9.26066 10.24452 11.19505
0.80 8.93346 9.90793 10.85978
0.90 8.32657 9.21190 10.07710
0.95 8.15809 9.00530 9.83100
0.99 8.12147 8.95783 9.77147
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= detail in a forthcoming report giving the fields in the cavity for the TE oy
o eigenmodes. .:
‘g o
J‘: Continuing, we show in figure 3 the results obtained for the eigenvalues :‘:
. kfllz) (R;g, = 3)a from equation (32). Table 1(b) contains numerical val- ~\:
: ues for these eigenvalues. Examination of figure 3 reveals that for a A
;:" given index value n the initial behavior of the eigenvalues is similar to ::
. that of figure 2. That is, at first, as R increases, the eigenvalue only very ':
, slowly decreases from the initial value when the inner sphere is not ,,:
2 present. This slow variation persists over a larger range of size of the in- ':.‘
n ner sphere as the index n increases. Now, however, for each value of n [
' . the kfllz)u trajectory begins to change rapidly with R noticeably earlier ::
'\: than the ki,],) a trajectory. For the higher values the kf:z) a trajectories show ,,".;
~ a faster variation with increasing R. s
2 o
'.. A new feature can be seen in the curves in figure 3. After the initial knee g,'
: in the curve, the eigenvalues again display a very slow decrease in value 5
< with increasing inner sphere radius. As n increases, this behavior persists :‘: X
% for a decreasing range of R, after starting at a larger value of R for higher 9., '
. n. Again, as R increases further, we observe another rapid decrease in Y
:.'_\ k;‘z’ a, which is more pronounced as n increases. This behavior gradually -
:f: tapers to a slow decrease in eigenvalue with R from about R = 0.8, thus i
L7 enabling the trajectories to go over to the known limiting values. Note -
W that figure 3 clearly indicates two knees in each of the kf,‘z) a eigenvalue B
trajectories. Roughly speaking, we can still distinguish between the three ’
" regimes—small, intermediate, and large inner dielectric spheres. This :::'-::
e method of classification now seems less clear in some ways than earlier. j',:::'.
. 2
g Figure 4 shows the eigenvalue trajectories for the modes kQ}) (R, =3)a .
N for n = 1,2,3,4. The corresponding numerical values of these eigenvalues o
| o are given in table 1(c). Upon examination of figure 4 we observe behav- ::l:.::
s ior very similar to what we previously described for the k;‘z) a in figure 3. f::Z;:
o The new feature present in figure 4 is another knee in each of the trajec- ;?'-::
. tories as an addition to a behavior similar to figure 3. Once again we in- L2
v dicate that we shall be able to better understand the structure of the trajec- ;-_::2
::j tories for the kL‘; a eigenvalues only by resorting to an investigation of ::ﬁ:'-:
$’_ the distribution of the field components for each eigenmode. This will be ’,:::j:
/s done in a subsequent report.
iy '._,..\
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Figure 3. TE cigenvalues Icf,',’ (R:€, = 3) a for the spherical cavity of radius a filled with dielectric €, internally
loaded with a concentric dielectric sphere of radius b and strength €, =3€E,.
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Figure 4. TE eigenvalue kf,',) (R, = 3)afor the spherical cavity of radius a filled with dielectric €, internally
loaded with a concentric dielectric sphere of radius b and strength €, = 3E,.
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In figure 5 we present the final set of TE eigenvalues, for kf"} (R:¢,)a,t0
be included in this report. Table 1(d) gives the corresponding numerical
values for these eigenvalues. Again we can readily note from examina-
tion of figure 5 that the trajectories for the kf,",’ a demonstrate the same
kind of behavior with R, the size of the inner sphere, as the previous set.
Again that behavior is emphasized more strongly. Once again the
predominantly new feature appearing is the occurrence of an additional
knee in the curves.

At this stage of the report, we can readily conclude that a further increase
in the index p beyond 4 will result in the same behavior with R that we
have already seen occurring. Indeed we can, with reasonable accuracy,
predict from the data in figures 2 through 4 the trajectories of the higher
order mode eigenvalues. With the aid of the tables we can extrapolate to
find their numerical values with some degree of accuracy.

3.3 The TE Eigenvalues for ¢_= 10.00
We consider next the results of concentrically loading the conducting
spherical cavity with a dielectric sphere of large relative dielectric

10 {—
3 CONOUCTING SPHERE GF RADIUS a
- CAVITY DIELECTAIC £,
2
2 ol CONCENTRIC BIELECTRIC SPHERE
s RADIUS b
: DIELECTRIC CONSTANT £, = 3¢,
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THE TE EIGENVALUES &4y (h £,
Figure 5. TF eigenvalue K\,) (R:€, = 3y for the spherical cavity of radius a filled with dielectric €, internally

loaded with a concentric dielectric sphere of radius » and strength €, =3,
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; constant, namely, €, = 10.00 €,. Figure 6 shows results calculated from ":
equation (32) for p = 1 and n ranging from 1 10 6. Table 2(a) contains ol
‘:’. numerical values for the kf,',’ (R;g, = 10)a eigenvalues plotted in figure 6. ﬂ )
‘_' Inspection of figure 6 immediately reveals that the trajectories of the y
' eigenvalues behave much like those shown in figure 2 forp =1 and g, =
: 3g,. Each trajectory still starts, for R << 1, at the same value, decreases
= slowly at first with increasing R, then at an accelerated rate with further
2 increase in R, and gradually slows its rate of decrease as R approaches
W unity. In this limit the value of the eigenvalues k;'l’ (R=1:¢, =10)a are
' given explicitly by the quantities
\ Vite, KV (R =0:6,)a = 1N10 k(R =0: ¢, = 10)a.
)
) We thus observe that for €, = 10 the trajectories start for R << | at the
) same values as for €, = 3, but decrease to values for R = | that are consid-

erably lower than for €, = 3. The net result is that, compared to the €, = 3
case, for €, = 10 the trajectories also display a very slow decrease for in-
creasing R initially. This behavior persists for a larger range of R as n in-
creases. A clearly defined knee is immediately evident in each eigen-

WP + AR

' o value trajectory, but appears earlier with R for €, = 10 compared to what
v o9
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s
2 s CONDUCTING SPHERE OF RADIUS a
>
; CAVITY DIELECTRIC £
= % :
oo e s
. g sk CONCENTRIC DIELECTRIC SPHERE NN
! ¥ RADIUS b o
<) v DIELECTRIC CONSTANT £y = 10€, \-" N
| a s
-2 = -
. 8 .
. % 04 ®
v, z N
>, W .
+ z Y
2, 5 D
5 2 o2 N
) o] < \~.
< = R
5 ok ®
[ = Ve
2 s o
. 0.0 ! ] ] <
:.’ 12 " 16 [} P
: THE TE EIGENVALUES kY (R: £, %
by Figure 6. TFE eigenvalues kf,',’ (R:€, = 10) a for the spherical cavity of radius a filled with dielectric €, inter-
‘ nally louded with u concentric dielectric sphere of radius b und strength €_= 10€,.
ool ]
)
",
*, 28

S5




- ¥

; R

K 'n'

i b

! is observed in figure 2 for €, = 3. The kflll) (R; &, = 10) a values then ex- %_
K hibit a rapid decrease over a much larger range in R than is seen in figure \
2 for €, = 3. This range is larger the larger the index n is. We note in fig- ®

ure 6 that this rate of decrease in kf,',)a gradually slows as R increases. NIy

: Finally, as R increases further, the rate at which the eigenvalues decrease '::::

becomes nearly imperceptible. This latter behavior can be seen to persist f.'i".

for a shorter range of R as the index n increases. Again we can discern '!:::'-

three quite distinct regimes in the eigenvalue trajectories of figure 6, . "

namely those of a small inner sphere, an intermediate size inner sphere, o

and a large size inner sphere. ¥

A

Results obtained from equation (32) for p = 2 are displayed in figure 7
forn=1ton=2>5. Again we note that these eigenvalue trajectories start s
at R = 0 exactly where the corresponding trajectories for €, = 3 start, but
they end, at R = 1, at values ¥3/V10 times those for €, = 3. Thereis a
considerable amount of similarity in both sets. Examination of table
2(b), which gives numerical values for the ki,'z’ (R:&;, = 10) a, will also
show the behavior of these eigenvalue trajectories.
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Table 2a. Numerical Values of the TE Eigenvalues k' (R:€, = 10)a for the Spherical Cavity
Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4 n=5 n=6
0.05 4.49328 5.76346 6.98793 8.18256 9.35581 10.51284
0.10 4.48885 5.76331 6.98793 8.18256 9.35581 10.51284
0.15 4.44690 5.76035 6.98773 8.18255 9.35581 10.51284
0.20 4.19332 §5.72477 6.98410 8.18218 9.35577 10.51283
0.22 3.98261 5.65198 6.97555 8.18118 9.35565 10.51282
0.25 3.63193 5.30554 6.87027 8.16964 9.35428 10.51264
0.27 3.41190 4.98023 6.51613 7.98705 9.33367 10.51108
0.30 3.11966 4.52433 §.90075 7.22583 8.50653 9.75569
0.40 2.42757 3.44379 4.44930 5.42871 6.38311 7.31778
0.50 2.00997 2.79284 3.57706 4.35019 5.10819 5.85518
0.60 1.74458 2.37268 3.00662 3.63843 4.26405 4.88225
0.70 1.57502 2.09576 2.62051 3.14684 3.67224 4.19504
0.80 1.47448 1.92305 2.36881 2.81429 3.25991 3.70540
0.90 1.42884 1.83848 2.23677 2.62865 3.01669 3.40233
0.95 1.42199 1.82475 2.21361 2.59360 2.96743 3.33677
0.99 1.42095 1.82258 2.20981 2.58760 2.95864 3.32456

Table 2b. Numerical Values of the TE Eigenvalues kf,'z’ (R:&, = 10) a for the
Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4 n=5

0.0t 7.72525 9.09501 10.41712 11.70491 12.96653
0.05 7.72328 9.09499 10.41712 11.70491 12.96653
0.10 7.60820 9.09059 10.41694 11.70490 12.96653
0.12 7.26468 9.07331 10.41605 11.70485 12.96653
0.15 €.28435 8.76617 10.40257 11.70402 12.96647
0.17 5.73488 7.97978 10.22983 11.69839 12.96609
0.19 5.35232 7.22448 9.32264 11.38203 12.96086
0.20 5.22407 6.90371 8.87423 10.83897 12.74741
0.22 5.07038 6.39234 8.09527 9.86524 11.60250
0.25 4.98980 6.03912 7.25222 8.70091 10.21430
0.27 4.97848 5.98749 7.09258 8.24502 9.47997
0.30 4.97672 5.97476 7.06823 8.20943 9.363956
0.35 4.90201 5.94765 7.05511 8.20232 9.36035
0.37 4.81017 5.88405 7.060951 8.17039 9.34000
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Table 2b. (cont’d) Numerical Values of the TE Eigenvalues kf,'z) (R;e, =10)a for
the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4 n=5
0.40 4.61003 5.68039 6.79150 7.92259 9.03553
0.50 3.86827 4.73848 5.60393 6.45592 7.28853
0.60 3.30421 4.01465 4.71619 5.40802 6.08893
0.70 2.90437 3.50044 4.08755 4.66730 5.24019
0.80 2.63149 3.14215 3.64355 4.13843 4.62817
0.90 2.47744 2.92854 3.36759 3.79849 4.22351
0.95 2.44803 2.88419 3.30604 3.71778 4.12201
0.99 2.44298 2.87617 3.29429 3.70157 4.10058
Table 2c. Numerical Values of the TE Eigenvalues k) (R;€, = 10) a for the Spher-
ical Cavity Loaded Internally with a Dielectric Sphere
R=b/a n=1 n=2 n=3 n=4 n=5
0.01 10.90412 12.32294 13.69802 15.03966 16.35471
0.05 10.89124 12.32272 13.69802 15.03966 16.35471
0.07 10.79431 12.32008 13.69795 15.03966 16.35471
0.10 9.44433 12.24105 13.69526 15.03955 16.35470
0.12 8.52775 11.29151 13.66549 15.03840 16.35464
0.14 8.24860 9.93125 12.65103 15.01216 16.35385
0.15 8.21188 9.52894 11.84970 14.44290 16.35009
0.17 8.19600 9.31562 10.66391 12.77442 15.01515
0.19 8.19058 9.29530 10.49781 11.75659 13.44347
0.20 8.17245 9.29504 10.49196 11.73292 12.98646
0.22 8.04956 9.28069 10.49068 11.72901 12.97369
0.25 7.55990 9.04977 10.42793 11.71673 12.97161
0.27 7.16361 8.63818 10. 13765 11.59456 12.94049
0.30 6.60346 7.93798 9.32125 10.72313 12.11663
0.35 5.98979 7.02022 8.13281 9.27935 10.43389
0.39 5.81796 6.65264 7.57634 8.54937 9.55424
0.40 5.80722 6.61699 7.51797 8.48018 9.49624
0.45 5.78991 6.58340 7.46212 8.42822 9.46678
0.48 5.70555 6.53506 7.42170 8.37745 9.38868
0.50 5.59773 6.43978 7.32087 8.24660 9.19462
0.60 4.87694 5.61702 6.35145 7.07965 7.79857
0.70 4.26651 4.89482 5.51222 6.12089 6.72171
31
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Table 2c. (cont’d) Numerical Values of the TE Eigenvalues k') (R:e, 10) a for
the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a ne1 n=2 n=3 n=4 n=5
0.80 3.81758 4.35949 4.89019 5.41234 5.92759
0.90 3.52889 4.00412 4.46778 4.92280 5.37109
0.95 3.46157 3.91555 4.35652 4.78772 §.21127
0.99 3.44831 3.89703 4.33194 4.75628 5.17222

Table 2d. Numerical Values of the TE Eigenvalues k., (R:€, = 10)a
for the Spherical Cavity Loaded Internally with a Dielectric Sphere

2

R=b/a n=1 n=2 n=3 n=4

0.01 14.06618 15.51460 16.92362 18.30126
0.05 14.00421 16.51336 16.92360 18.30126
0.10 11.43270 13.72226 16.86368 18.29972
0.12 11.37161 12.58012 14.83143 18.01644
0.14 11.36031 12.52015 13.78803 15.53453
0.15 11.31392 12.51957 13.77198 15.07830
0.18 10.59372 12.36687 13.75764 15.06262
0.20 9.86784 11.72783 13.54654 15.03454
0.22 9.32661 10.90445 12.69866 14.54095
0.25 9.02345 10.06308 11.41212 12.96304
0.27 9.00406 9.89851 10.96020 12.18163
0.29 8.99128 9.87796 10.86449 11.94701
0.30 8.95668 9.87656 10.85977 11.93240
0.34 8.47016 9.61876 10.74045 11.87308
0.35 8.29660 9.45505 10.60593 11.77077
0.40 7.47526 8.51649 9.56963 10.62991
0.45 6.90635 7.76619 8.66383 9.57430
0.49 6.73440 7.44741 8.22620 9.04498
0.50 6.72620 7.41735 8.17691 8.98707
0.55 6.68379 7.38512 8.12963 8.93470
0.57 6.59710 7.32354 8.07623 8.87086
0.60 6.39671 7.12858 7.86922 8.62393
0.70 5.63633 6.28050 €6.91513 7.54230
0.80 5.02010 5.57962 6.12794 6.66742
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g::': Table 2d. (cont’d) Numerical Values of the TE Eigenvalues kf,',,’ (Re, =10)a ':::: )
. for the Spherical Cavity Loaded Internally with a Dielectric Sphere ?
~‘ R=b/a n=1 n=2 n=3 n=4 ."‘Q’
\ 0.90 4.59071 5.08176 5.56186 6.03332 ay
! 0.95 4.47463 4.94037 5.39444 5.83934 k
o 0.99 4.44838 4.90650 5.35217 5.78794 1
~ e
" 2
"~ N
-
Z Table 2e. Numerical Values of the TE Eigenvalues oy
" KR (R, = 10) u for the Spherical Cavity Loaded ol
i:: Internally with a Dielectric Sphere E-r”
" R=b/a n=1 R=b/a n=1 NN
: 0.01 17 . 22072 0.33 9.92883 i
> 0.03  17.21120 0.35  9.91307 e,
- 0.04 17. 16672 0.37 9.88331 N
2 0.05 16.90815 0.40  9.59286
% 0.07 15.75413 0.45  8.78128 ~
) 0.08 14.57621 0.50 8.08606 ;'
-.3 0.10 14.53178 0.52 7.88497 o
4 0.12 14.44114 0.54  7.75027 g
~ 0.15 13.10915 0.55 7.71145 E
0.17 12.35053 0.60 7.66990
8 0.18 12.22112 0.62 7.60734 g
;\3 0.20 12.17430 0.65 7.41396 )
0.22 12.13745 0.70 6.99874 N
v 0.23  12.03661 0.80  6.23063 N
- 0.25 11.56566 0.90 5.66142 .
-~ 0.30 10.21668 0.95 5.49014 el
e 0.32 9.97392 0.99 5.44616 o
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For €, = 10, we can plainly see the presence of a second knee in the
curves. Now, however, we find all the characteristics are strongly accen-
tuated. We see in figure 7 a very slow decrease in k‘nlz’ (R; €, =10)aas R
increases from zero. This behavior persists for a larger range in R as n
increases. Now the first knee appears for €, = 1), earlier than for g = 3.
Thus, for example, the knee appears for kg'z)(R; g =10)a at R = 0.2,
whereas for k;'z’(R; € =3)a, itis at R = 0.3. The region immediately
following the first knee shows a much more rapid decrease as R increases
for €, = 10 than for €, = 3. taking place over a smaller range of R. As n
increases, this behavior is accentuated further. As we can see in figure 7,
this is followed by a region of quite slow decrease in the eigenvalue as R
increases and then the appearance of a second knee which is sharper for
t, = 10 than for €, = 3. Furthermore, this second knee occurs at lower R
values for the larger €,. Figure 7 shows that the second knee appears at
slightly higher values of R for larger values of n. After rounding the sec-
ond knee the eigenvalue decreases rapidly at first and then ever more
slowly thereafter as R increases. The larger the value of n, the more pro-
nounced this behavior is. Finally, as R approaches the limit unity the
trajectories continue to decrease as R increases, but very slowly. The
range of this latter behavior is smaller, but the rate of decrease is slower
with increasing value of the index n.

The existence of three regimes is again quite evident in figure 7. For the
initial range of R for which the eigenvalues kL'Z’ a change very slowly as R
increases, we have a small interior sphere. For the upper range of R for
which the eigenvalues again change slowly with R, we have a large
dielectric sphere loading the cavity. The remainder of the range of R
from the onset of the first knee then corresponds to an intermediate inte-
rior dielectric sphere. For the intermediate sphere, as R increases, a vari-
ety of behaviorial aspects are displayed by the system eigenvalues.

As expected, going from p = 2 to p = 3 causes a third knee to appear in
the eigenvalue trajectories for €, = 10, just as we saw happen for €, = 3.
Figure 8 shows /(fl‘}') (R:¢, =10)aforn=1ton=5. Table 2(¢) gives nu-
merical values for these eigenvalues. Again we observe a sharpening up
of ihe characteristics of the trajectories. Starting at the empty cavity reso-
nances for R = (), we note that as R increases the k;‘_" (R: €, =10)a values

decrease at a rate slower than for the k(nlz’(R: €, = 10)a values, but for a
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%
shorter range of R now. The first knee occurs earlier for p = 3 than for p :-:_.'
= 2 and is followed by a sharper tum and a shorter region in which ki,',' a EA 5
changes more rapidly with R than we saw for k(nlz’a. The higher the value AN
. . oo . . .
of the index n, the more this behavior is emphasized. Figure 8 shows a Nb::
. . . . Y
second knee followed by a range in R over which a rapid decrease in i
kig a occurs. This region ends in the third knee, after which we see in the oA
figure the usual behavior as R increases. Notice that the trajectories in T
figure 8 are flatter in the region between the first and second knees than
in the region between the second and third knees. The higher the value
of n, the more emphasized this is. Again there are three distinguishable
regions. with the intermediate regime displaying richer variation with R
than we saw in figure 7 forp = 2. -
F\f\.
. , I
In going from p = 3 to p = 4. we observe another knee and shoulder im- S
. . . . o
pressed on the trajectories. The same pattern of changes in the trajec- O
tories is evident in figure 9. which contains the eigenvalues 5'*-'."
"i.lJ’ (R: €&, = 10) a with the sharpening of the features over the p = 3 case TN
for €, = 10 and the p = 4 case for €, = 3. Table 2(d) contains numerical .:f.\':{;
values for the k‘"lja of figure 9. Kt
~ e
’. 'l
Y t..‘i
CONDUCTING SPHERE OF RADIUS »
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CONCENTRIC DIELECTRIC SPHERE
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THE TE EIGENVALUES ALY IR £ ’
Figure 8. TFE eigenvalues A:,,"‘ (R:€, = 10)a for the spherical cavity of radius a filled with dielectric €, inter-
nally loaded with a concentric dielectric sphere of radius b and strength €, = 10€,.
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The pattern of changes induced as the index p increases by unity is now
evident. Thus. in figure 10 we show only the n = 1. p = S trajectory with
an additional knee and shoulder and further emphasis of the detailed be-
havior as R increases. Table 2(e) gives numerical values for the
KX (R.€ = 10) a trajectory shown in figure 9.

X X

It should be quite evident what one would expect the trajectories for
higher order eigenvalues to look like after examining the given sets in
detail. It is a relatively simple exercise to locate with good accuracy the
limiting values for R = 1, for n = 1 and p greater than 5. Thus. forp =5
+q.say. K's, (R € = 10)a =(5 + ¢) + 0.45. This result can be deduced
from inspection of figures 6 through 10. Similar predictions for the other
values of n can be made in the same way. which means we can find these

F s
":"f ,e
R T T T

eigenvalues (approximately) without directly resorting to solving equa-
tion (32).
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To summarize. some very intriguing characteristics are exhibited by the
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eigenvalue trajectories. Nevertheless. we shall have to deter the explana-

Iy

tion of these to a subsequent report giving the detailed behavior of the
corresponding  spatial  distribution  of the field components in the
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Figure 10. TE cigenvalues k'l‘_" (R:€, = 10)a for the spherical cavily of radius a [illed with diclectric €, internally
loaded with a concentric diclectric sphere of radius b and strength €, = 10€,.

dielectric loaded cavity. We shall have to be content here with merely
noting the rich variety of interesting characteristics displayed by the
eigenvalue trajectories.

The TE Eigenvalues for e_=1/3

We have thus tar examined effects on the eigenvalues induced by loading
the interior of the cavity with a dielectric sphere whose dielectric constant
is larger than that of the cavity, i.e., €, = €,/€, > 1. For that situation we
considered representative values of €, that covered a substantial range. In
an attempt at completeness. we next consider effects on eigenvalues of
the spherical cavity that result when the cavity is concentrically loaded
with a dielectric sphere whose relative dielectric constant is less than
unity. Many of the essential characteristics can be seen in the results for
€, = €,/€, = 1/3. Therefore, we limit ourselves to considering only this
one case. Now. when R = (), the eigenvalues y,a are once again the same
as for the empty spherical cavity. But. in the other limit, as R approaches
unity. the eigenvalues are multiplied, rather than divided, by V3. since
Ve, =VI/3.
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In the previous two cases of dielectric loading, we solved for the eigen-
value, v,da. knowing that we would be able to find the corresponding
wavenumber in the denser dielectric region by means of the equation

€2
Y. = = M

£
If we wish to be consistent in defining our eigenvalue as the one in the
region of smaller dielectric constant. we should be solving for y,a. rather
than y,a. This formulation is usually desirable when the medium of
lesser dielectric strength is air, for example. But y,a is equivalent to v«
multiplied by the square root of the relative dielectric constant. Please
note that it is this "normalized” y,a or. equivalently. ka. that is listed in
the tables and plotted in the figures which relate to this section. The
“true" values of ka are achieved by multiplying the tabled values by

Some very interesting behavior manifests itself immediately in figure 11,
which displays the eigenvalue trajectories k. (R: €, = 1/3)a for p = 1
and n = 1 to n = 6. We clearly observe that there is a considerable range
over R for which the eigenvalues increase with R, but at an astonishingly
slow rate. This behavior clearly becomes even more pronounced as n in-
creases. Thus, the total change for n = 1 as R goes from zero to (0.3 is
only about ().1. whereas, for n = 6 as R goes from () to ().55, the same to-
tal change is incurred. That is, for n = 6, about twice the range in R re-
sults in the same total change. Considered from the point of view of the
filling factor of the cavity, it is quite remarkable to note that substantial
filling of the cavity by the dielectric load hardly affects the eigenvalues
k‘,,‘,’ a. and this effect persists to larger R as n increases. Thus, the higher
modes n > | appear to change even more reluctantly as the load increases
in size.

Following this range of slow variation the eigenvalue k‘.',’a increases
more rapidly with R at first and then exhibits a moderately slow rate of
increase with R. Then for large R at about R = 0.9, the eigenvalue k' a
again resumes a very slow rate of increase as R increases to unity where
the load has expanded to homogeneously fill the cavity. These charac-
teristics are more enhanced as n increases. Indeed, as n increases a larger

range of variation in k. @ can be seen in the intermediate region and a
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- v . . . \J'\ --
shorter range in the final slowly varying region as R approaches unity. DRSS
. . 1 .
Table 3(a) contains numerical values for the k' a eigenvalues of figure .~,x‘r‘

N Y
)

1. .
Before continuing on to p = 2. let us compare the eigenvalue trajectories ::_‘.;_\
forp=1,e =3,andp=1,¢ = 1/3; ie., the curves in figures 2 and 11. "
Clearly they are all monotonic. For p = 1 and fixed n the trajectories for A
. . . -« . . . -‘.AN
€, = 1/3 display increasing values of the eigenvalues with increasing R. f;‘._.::‘;
whereas those for € = 3 show decreasing values as R increases. Both ::-."';;:;
sets suggest three size regimes for the inner dielectric sphere—small, in- A
! termediate, and large. The small inner sphere regime appears to cover a LA
larger range of sizes for €, = 1/3 than for €, = 3. The opposite is true for g
) the large inner sphere regime. The intermediate regimes are about the :
same. Now let us proceed to p = 2 for g, = 1/3. o
l . - " -
Figure 12 shows the p = 2 eigenvalue trajectories for n = 1 ton = 5 and NN
: table 3(b) contains numerical values for the corresponding eigenvalues :-‘:-;:1
| 3
ki) (R:€, = 1/3)a. For R = 0, they start out where expected. then show a A
very slow increase with increasing R at first. This behavior persists for a '.‘_':.*:1
A smaller range of R than we saw in figure 11 for p = 1 for each value n. °
N,
S
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Tab!c 3a. Numerical Values of the TE Eigenvalues k) (R:€, = 1/3) a for the Spherical AN
Cavity Loaded Internally with a Dielectric Sphere ..‘j
R=b/a n=1 n=2 n=3 n=4 n=5 n=6 e
0.05 2.59428 3.32753 4.03448 4.72420 5.40158 €6.06959 ‘:J
0.10 2.59443 3.32754 4.03448 4.72420 5.40158 6.06959 o
L)
0.20 2.59872 3.32813 4.03456 4.72421 5.40158 6.06959 :ﬁg
"ot
0.30 2.62210 3.33555 4.03660 4.72473 5.40170 6.06962 )
0.40 2.68788 3.37083 4.05340 4.73207 5.40471 6.07079 o
0.50 2.82307 3.47099 4.12148 4.77548 5.43102 6.08608 ‘
0.60 3.06229 3.68799 4.30495 4.92383 5.54699 6.17424 "--
0.70 3.45372 4.10280 4.70820 5.30154 5.89075 6.48127 ‘:.",:'
0.80 4.00972 4.83103 5.52816 6.15939 6.75615 7.33493 R
0.85 4.26971 5.28293 6.14535 6.89590 7.57135 8.19897 :'.-1
S
0.90 4.42804 5.61867 6.71618 7.72475 8.64548 9.48357 TN
)
0.95 4.48565 §.74678 6.95753 8.13244 9.27855 10.39934 -_._‘:
L
0.99 4.49335 5.76333 6.98770 8.18219 9.35526 10.51206 o
I}"
v
-
. . e
Table 3b. Numerical Values of the TE Eigenvalues k:,'z’ (R:&, = 1/3) a for the "
. . . . . “r
Spherical Cavity Loaded Internally with a Dielectric Sphere i
R=b/a n=1 n=2 n=3 n=4 n=5 'r'.
’--
0.05 4.46025 5.25101 6.01433 6.75783 7.48623 N
0.10 4.46228 5.25112 6.01433 6.75783 7.48623 .-:";j:
0.20 4.50698 5.26123 6.01619 6.75813 7.48627 e
0.30 4.67880 5.34694 6.05175 6.77099 7.49046 !f_
- .
':: 0.40 §.02508 §.61047 6.22883 €.87885 7.55093 e
o 0.50 5.55227 6.12289 6.67413 7.24173 7.83216 o
- 0.60 6.13356 6.903561 7.48865 8.02226 8.54929 e
- -\‘n
® 0.65 6.29287 7.31436 8.03667 8.61560 9.14461 .'
:-‘_; 0.70 6.32829 7.56756 8.56799 9.32160 9.92728 T
'_"‘.: 0.75 6.33922 7.61942 8.83647 9.91024 10.78773
e 0.80 6.45504 7.64411 8.86344 10.07269 11.23393
g 0.85  6.81283  7.88007 8.97735  10.11151  11.26856
v 0.90  7.37109  8.51928  9.58584  10.61248  11.63328 [
AN
_,J‘_: 0.95 7.68393 9.02563 10.30954 11.54703 12.74418 \{:
") -
N 0.99 7.72494 9.09451 10.41636 11.70383 12.96506 A
a A
.; [ J
U L
W -
" R
> 4) A
W, (\
! 0
. \m
8 o
o iy
r. . ::\
S - -, - LA AT A P N R A S s ’ >

LI PR et ot T N TR o : e e TN T S A



[ VT Saenn ¢ g .0 68 g il A°0 270 0 A g L aig 0y o "l ot

wWuN. CuW o

15 e
[ 4
)
z o

X
A%4% @

27,
..'.

l.'
L
&y

Table 3c. Numerical Values of the TE Eigenvalues ) (R:€e, = 1/3) a for the
Spherical Cavity Loaded Internally with a Dielectric Sphere

»o2
5 1)

R=b/a n=1 n=2 n=3 n=4 n=5
0.05 6.29589 7.11466 7.90856 8.68315 9.44240
0.10 6.30579 7.11552 7.90861 8.68316 9.44240
! 0.20 6.46361 7.16979 7.92311 8.68637 9.44302
| Cd
| 0.30 6.89422 7.46634 8.09436 8.77173 9.48058 NN
i NN o
0.40 7.55005 8.09855 8.62558 9.18115 9.77332 AN
0.50 8.10967 8.99227 9.57439  10.08155  10.58411 RN
0.55 8.15397 9.35481  10.15639  10.72741  11.22935 ot
0.60 8.19431 9.45837  10.61068  11.43380  12.03077 O
0.65  8.45088  9.49536  10.71575  11.89237  12.83231 e
~
0.70 8.95862 9.82443  10.80233  11.94343  13.13739 Q.-;'
[
0.75 9.42703  10.48337  11.35852  12.23209  13.22150 oo
,‘...,‘l
0.80 9.54680  10.89733  12.10373  13.13389  14.02286 .0
P A
0.85 9.58831  10.93208  12.25989  13.55397  14.79674 T
0.90  10.04004  11.23666  12.43592  13.64711  14.86768 E;:jr
0.95  10.78049  12.13873  13.43716  14.68489  15.88868 §§§§
0.99  10.90325  12.32168  13.69629  15.03737  16.35175 T"\:
‘:_.r,;/'
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Table 3d. Numerical Values of the TE Eigenvalues k) (R:e, = 1/3)a
for the Spherical Cavity Loaded Internally with a Dielectric Sphere

RS S 5 TR A,

\ R=b/a n=1 n=2 n=3 n=4

" 0.05  8.12245  8.95740  9.77086  10.56624

. 0.10  8.15202  B8.96111 9.77119  10.56626

o 0.20  8.49046  9.12083  9.83003  10.58388
0.30  9.19020  9.71212  10.25741  10.85562
0.40  9.90277  10.66974  11.19390  11.68674

p_‘: 0.45  9.97521  11.12443  11.80829  12.31948

A 0.50  10.04684  11.28868  12.36939  13.05365
0.55  10.41778  11.34393  12.55668  13.66935
0.60  10.98816  11.77403  12.65503  13.79198
0.65  11.34156  12.45693  13.27072  14.06253
0.70  11.37485  12.75106  13.98707  14.95315
0.75  11.68947  12.82383  14.09741  15.39889
0.80  12.46143  13.52556  14.51208  15.56183
0.85  12.72179  14.12917  15.44163  16.63609
0.90  12.84194  14.19586  15.54383  16.87999
0.95  13.78510  15.12991  16.41936  17.66522
0.99  14.06432  15.51208  16.92034  18.29709
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At the upper limit of R, a short range of R is shown also for which the

eigenvalues increase very slowly with R. This range decreases very rap-

idly as n increases. The region between these two limits reveals the pres-

ence of an indentation towards lower ka values. The range in R covered

by this "dent" decreases with increasing values of n. It also produces an

intermediate region in which the rate of change of k) (R:e, =1/3)a
i changes from fast to slow to fast as R increases. Although the region of
slow variation covers a smaller range in R as n increases, it simul-
| taneously results in a much slower rate of change with R.

Compared with the k', a trajectories for €, = 3 in figure 3, where we note
that the eigenvalues are monotonic and decreasing with increasing R, the

eigenvalues for €, = 1/3 are monotonic and increasing with increasing R. !
The curves of figure 12 for €, = 1/3 do not display the sharp characteris-
tics of those of figure 3 for €, = 3. They do, however, retain many of the L

other features of the trajectories of figure 3.

Figure 13 displays the eigenvalue trajectories forp = 3 and forn=1ton

= 5. Numerical values for these k'3 (R;e, = 1/3)a curves are given in

table 3(c). We shall first consider these curves with regard to how they

G
L
7

vary as R and n vary. Next we compare them to the p = 2 curves. Then l:;’.\;‘.:j'
we shall make some comparisons with the case €, = 3, i.e., for the situa- :C:\":j
tion in which the dielectrics in the cavity are interchanged. Initially, we .:;:f.:"
observe that the values start at the known values for a cavity homoge- RV
neously filled with dielectric. Since we have the stronger dielectric fill- Kt
ing the cavity, these R = 0 values for each n are reduced by the factor :'.::.-:::

V1/e, = V3, as we discussed earlier. As R increases, the eigenvalue for n = e
1 very slowly increases with R up to about R = 0.1. Further increase in R ;
causes the eigenvalue to increase at a more rapid rate until about R = 0.5,
where again it dramatically slows its rate of increase until R has increased
to about R = 0.6. This is followed again by a more rapid increase in
k‘,';’ (R:&, = 1/3)a with R and a tapering off from this rate of increase with
further increase in R, starting at about R =().7. We observe that over ap-
proximately the range 0.5 < R <().7 there is present in the k‘,’,’ a trajectory
an indentation.
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Immediately beyond this range in R, we can clearly see another identa-
tion over which the same sort of behavior in k}} @ is clearly visible. Just
after this second indentation in the trajectory there is a rapid return, as R
approaches unity, to the limiting eigenvalue for the cavity homoge-
neously filled with dielectric.

As we let nincrease. the slowness of the very early increase in k. a as R
increases from R = () becomes even more pronounced iand persists for a
larger range of R. Thus, at n = 5 this behavior is quite obvious in figure
13 up to about R = 0.3, Clearly. as n increases further, this would be
even more enhanced for a larger range in R.  Also. the rapid variation
with R that follows this initial behavior increases further, as n increases,
over a slowly increasing range of R. This behavior as R increases is then
followed by a short range of R over which '\ a increases with R, but
slowly. As n increases, this region of the trajectory becomes shorter until
at n =5, it almost is undetectable in figure 13.

Following this behavior, we find that k., a increases more rapidly with R
through an indented region. We note in figure 13 as n increases this
range of increase with R grows more rapid. Thereafter, we observe the
effects of a second indentation in the trajectories and a repeat in the be-
havior of the k',,',' a values as R increases through the range corresponding

to the identation up to the limitat R = 1.

The p = 3 case of figure 13 primarily differs from the p = 2 case of figure
12 by the addition of one more identation in the trajectories and the resul-
tant characteristics. If we compare the p = 3 case for €, = 1/3 of figure 13
with the p = 3 case for €, = 3 of figure 8 we observe the former is
monotonically increasing with R, whereas the latter is monotonically
decreasing as R increases. The k', (R:€, = 1/3)a curves are considerably
smoother than the k'3 (R:€, = 3) a curves, although both have the same
number of indentations in the same sense relative to ka. Thus, inter-
changing the dielectrics in the cavity results in some very remarkable

differences in the corresponding eigenvalue trajectories.
The trends in the TE eigenvalue trajectories as p is increased further are
now clearly apparent. We see in figure 14 pretty much what we now ex-

pect to for p = 4. This is also evident in table 3(d) for the
k‘,,',,' (R:€&, = 1/3)a numerical values. Clearly, another indentation, the
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third one now, is present in the k.. trajectories, and the expected behav-

ior is exhibited over the consecutive ranges of R as we go from R = 0 to
R=1.
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We have just completed examining a large number of sets of TE
!(:,1,’ (R:€/) u trajectories for each value of p and for a substantial range of

g relative dielectric strength €,. Next, we proceed to consideration of the
corresponding sets of TM eigenvalues.
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Figure 14. TE eigenvalues k., (R:€, = 1/3) a for the spherical cavity of radius a filled with dielectric €, inter-
naly loaded with a concentric dielectric sphere of radius # and strength €, = 1/3¢,.
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4. The Transverse Magnetic (TM) Eigenvalues

4.1

Introduction

Just as we did in section 3.1 earlier for the TE eigenvalues. we now intro-
duce some notation conventions for the TM eigenvalues. Using the iden-
tities just preceding equation (32), we rewrite equations (29) and (30).
respectively, as follows:

& i (Ve RY1a) T3 (a.Ra)

- (36)
+ [\[e_,Rylui,. (\fE,Ry;a)]'Y‘,,“(Ru.a) =0 .
where
T (a.m =T (aRa)
= (ndi.(na}] RN aka(RY )] = [R1ain(RY1a) ) [Viak. (1 a)]
(37)

For fixed values of R and €, we consider y,a the variable in equation (36)
(just as in the TE case). The values y,a that satisfy this equation are the
eizenvalues for the TM modes. Again we note that since the dielectrics
within the cavity are fossless. and the outer cavity wall is a perfect conduc-
tor. all the roots of equation (36) are purely imaginary. Then, as for the
TE eigenvalues. for each value of the index n, the TM eigenvalue spec-
trum will be a doubly infinite discrete set of ordered real numbers, each of
which we denote by ki a where jki2 a is a root of equation (36). For
fixed n we thus have k%5 a > k2 a for p” > p where p,p” = 1.2.3...

Each value of kﬂ,f,’ a is a function of the relative dielectric strength, € , and
of R, the ratio of the radius of the inner dielectric radius b, to the cavity ra-
dius ¢. Thus k‘,ﬁ,‘a = kf,,'(R:E,) a. For the TM case. we shall use the same
convention for the dielectrics as in the TE case at the limits R = (land R =
1, or equivalently, h = 0 and h = a, which correspond. respectively. to the
absence of the inner dielectric sphere that loads the cavity. and to the inner
dielectric load sphere completely filling the cavity. Thus, we can immedi-
ately obtain the TM eigenvaiues from the well-known cavity eigenvalues
in these limits. As before, for € > 1. the eigenvalues k‘,,:,,' a for R = 0 are
the usual ones for the spherical cavity. which vary with R unul R = 1.
whereupon thev are just those for R = 0 reduced by the factor Ve,. For ,
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4.2

Figure 15. TM cigen-
values K7 (R:€, = Du
for the spherical cavity
of radius « filled with
diclectric €, intemally
loaded with a con-
centric diclectric
sphere of radius b and
strength €, = 3€,.

< | they start at R = () as the reduced nonmalized values, and go over at R =
1 to the unreduced values. The eigenvalues between these limits must be
computed using equation (36) to obtain the entire picture. This has been
done. and we now proceed to consider the results so obtained for the same
range of dielectric properties as in the TE case.

The TM Eigenvalues for €, = 3.00

We shall first consider the details of the results obtained for € = 3. Here
we recall that the inner dielectric sphere of radius b has a dielectric con-
stant €,. which is three times that of the dielectric constant €, of the cavity
dielectric in the absence of the inner foad.

In figure 15, we find the TM eigenvalue trajectories k) (R:€, = 3)a for p
= | and with 7 going from n = | to n = 8. Table 4(aj contains numerical

values for these eigenvalues.
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Table 4a. Numerical Values of the TM Eigenvalues k' (R:€, = 3)a for
the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4 n=5
0.05 2.74288 3.87023 4.97342 6.06195 7.14023
0.10 2.73706 3.87007 4.97342 6.06195 7.14023
0.20 2.69190 3.86492 4.97291 6.06190 7.14022
0.30 2.58539 3.83249 4.96545 6.06035 7.13991
0.40 2.43108 3.73200 4.92125 6.04385 7.13420
v.50 2.26204 3.54208 4.77545 5.95374 7.08509
0.55 2.17964 J3.42198 4.64826 5.084425 7.00431
0.60 2.10058 3.29330 4.48936 5.67699 6.84888
0.65 2.02536 3.16109 4.30924 5.45979 6.60725
0.70 1.95399 3.02859 4.11815 5.21204 6.30396
0.80 1.82162 2.76782 3.72715 4.68780 5.64199
0.90 1.69988 2.50972 3.32898 4.15081 4.97012
0.95 1.64157 2.37657 3.11535 3.85667 4.59870
0.99 1.59555 2.26400 2.92417 3.58021 4.23397 ¢

b Y

N
Table 4a. (cont’d) Numerical Values of the TM »
Eigenvalues k'2 (R:€, = 3) a for the Spherical ‘
Cavity Loaded Internally with a Dielectric Sphere ;:Z_

‘¢
R=b/a n=6 n=7 n=8 4
0.05 8.21084 9.27546 10.33524 -
0.10 8.21084 9.27546 10.33524 T
0.20 8.21084 9.27546 10.33524 s
0.30 8.21078 9.27545 10.33524 o
0.40 8.20888 9.27484 10.33504 e
0.50 8.18396 9.26270 10.32929 e
0.55 8.13056 9.22989 10.31005 N
0.60 8.00051 9.13009 10.23846 22:2:
0.65 7.74811 8.88003 10.00150 RROCN
0.70 7.38917 8.46338 9.52239 g
0.80 6.58395 7.50955 8.41636 E ii
0.90 5.78326 6.58770 7.38191 R
0.95 5.33969 6.07819 6.81306 N
0.99 4.88643 5.53809 6.18923
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Table 4b. Numerical Values of the TM Eigenvalues I(‘,,:z’ (R:€, = 3)uforthe
Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4 n=5

0.05 €.10886 7.44298 8.72175 9.96755 11.18898
0.10 6.05385 7.43963 8.72160 9.96754 11.18898
0.20 5.71699 7.34454 8.70488 9.96504 11.18864
0.30 §.33241 6.92317 8.49585 8.89331 11.16763
0.35 5.18844 6.62768 8.19692 9.71259 11.08859
0.40 5.05083 6.34388 7.79200 9.31550 10.81376
0.45 4.89193 6.08469 7.37505 8.76706 10.2201
0.50 4.70492 5.83982 7.00083 8.22779 9.51894
0.55 4.50438 $.60029 6.67709 7.77279 8.90497
0.60 4.30845 5.36815 6.39444 7.40906 8.42805
0.65 4.12893 5.15080 6.14206 7.11422 8.07612
0.70 3.97157 4.95453 5.91497 6.86154 7.80095
0.80 3.73125 4.63748 5.53332 6.42664 7.32360
0.90 3.59128 4.42487 5.24643 6.06267 6.87761
0.95 3.55456 4.35349 §.13403 5.90342 6.66576
0.99 3.53556 4.30780 5.05449 5.78389 6.50075
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Table 4¢. Numerical Values of the TM Eigenvalues k.5 (R:€, = 2)a
for the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a8

n=1

n=2

n=3

n=4

O O O O 0 0 OO0 O 0 © o o

.05
.10
.15
.20
.25
.30
.35
.40
.45
.50
.85
.60
.70

D O OO N NN ® ® ©

.28897
. 10628
.77250
.48286
.24336
.90934
.49142
.13785
.92502
.83769
.79459
.69222
.24923

e e )
o 0 O o

N N NN o0 00

.71235
.69302
.57386
.24119
.77384
.33457
.90388
.47827
. 13346
.91323
.79473
.69193
.25848

12.
12.

12
11
11

o m o © © 0

06358
06224
.04282

.92761
.54281
10.
10.
.78701
.38185
.06659
.84867
.68765
.23221

89296
27771

50

13.
13.
13.
13.
13.

12
11
1
10

38012
38005
37761
35179
19856

.63995
.76.78
.07181
.61430
10.
.95403

25283

9.71039
9.18334
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Table 4c. (cont’d) Numerical Values of the TM Eigenvalues

'
k) (R:€, = 3)u for the Spherical Cavity Loaded Internally NTAY
with a Dielectric Sphere .
DR
AN
R=b/a n=1 n=2 n=3 n=4 t:':":
N
0.80 5.78179 6.71995 7.63368 8.52910 A
0.90 5.47244 6.33328 7.17548 8.00447 LN
0.95 5.40210 6.23206 7.04158 7.83653 o
0.99 5.38160 6.19214 6.97764 7.74468 N
=
3»’,::‘
1 f.n
Table 4d. Numerical Values of the TM Eigenvalues k. (R:€, = 3)a for L4
the Spherical Cavity Loaded Internally with a Dielectric Sphere NI
N
R=b/a n=1 n=2 n=3 n=4 g;{b\ﬂ
U
0.05 12.41947 13.91814 15.31350 16.67415 /;’.f':.fg
0.10 12.04265 13.84993 15.30689 16.67365 .
-~
0.15 11.62708 13.48050 15.21499 16.65837 -'T;:I-:t
0.20 11.24562 12.84136 14.72384 16.49682 e
0.25 10.61792  12.22503 13.81468 15.66128 SN
0.30 10.15323 11.59708 13.07775 14.54327 ““‘;
0.35 10.01586 11.19032 12.52571 13.90196 et
0.40 9.91200 11.02213 12.18209 13.44077 RN
[N
0.45 9.56698 10.80230 11.94798 13.09572 AN
0.50 9.10805 10.36373 11.56787 12.72224 f.'::.".s"";
0.55 8.75820 9.90507 11.06709 12.21408 -
0.60 8.61046 9.60926 10.65945 11.73258 PR
0.70 8.45130 9.41560 10.34744 11.26968 L
AR
0.80 7.87959 8.84116 8.77566 10.68876 ROV
oYL N LY
0.90 7.37383 8.25694 9.12024 9.96792 "o
0.95 7.24289 8.09214 8.92173 8.73616 RAAS
0.99 7.21087 8.04246 8.85120 9.64218 Z:jzjt
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It is important to notice, at the outset, that the TM eigenvalues k‘,:,'u are the
lowest-lying set for € = 3. Furthermore, to cover the same frequency
range shown in figure 2 for the TE values k. a. we require TM eigen-
values k‘,,:,’ a to higher order (i.e.. to n = 7 compared with n = 5 for the TE
range). This circumstance will be seen to hold true for higher p values.

We now make one comparison, i.e.. the behavior of the TM trajectories
relative to the TE trajectories as R increases from zero to unity or as the
dielectric load increases in size until it fills the cavity completely. Note
then that. in general, the TM eigenvalue trajectories are concave
downward for the entire range of R, whereas. in the TE case. for p = 1. the
trajectories change over at about R = 0.5 from concave down to concave
upward.

The TM eigenvalue trajectories kf,’ a are monotonic, decreasing as R in-
creases. Initially. this is a quite slow decrease with increasing R. for a
range of R that grows with increasing value of the order index n. Indeed.
we can observe in figure 1S that for n = 1, this holds up to about R = (.1
and increases so that at n = ¥ it holds up to about R = (.6, Clearly. this
range continues to grow with further increase in n. Following this initial
behavior the eigenvalues k',,z,’ a decrease more rapidly with increasing R
and continue in this manner almost to R = 1 itself. Note in figure 15 that,
as n increases, the eigenvalue trajectory shows a more rapid rate of
decrease as R increases. For the p = | case. we cannot clearly discern three
distinct regimes corresponding to a small-sized inner dielectric, an inter-
mediate one. and a large one.

Before continuing to higher p values. we pause to focus on a very remark-
able feature exhibited in figure 15. Notice that for n = . we find that k;z,’ a
changes by less than one percent (compare table 4(a)), as R increases to R
=().6. This tells us that we have an inner dielectric sphere whose radius
can vary from zero to ().6 times the radius of the entire cavity. with very
little change in the eigenvalue. kia'a. A small increase in the size of the in-
ner sphere from this pcint on, then. causes a rather substantial increase in
the eigenvalue. To understand this interesting property requires a detailed
study of the corresponding spatial distributions of the field components.
We defer this discussion to a subsequent repo -t
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Next consider the results for p = 2 shown in figure 16, where k,, a is Talny
. . - %
plotted for n = | to n = 5. Table 4(b) gives numerical values for these A
. . 1 -
eigenvalues. Another quite notable feature shows up. The k) (R:€, = 3)u .
. . . . A
trajectories very closely resemble the TE trajectories for p = 1. RNy
~ . - DGy
K\ (R:e, = 3)a. The TM curves seem merely to be shifted to higher val- NN
EAS,
ues in y,a than the TE curves. RN
N )
.!\4’\4

For p = 2. the TM curves are still monotonically decreasing as R increases
and display the now familiar feature of a single knee in each curve. Un-
like the p = 1 family, we note that once again three size regimes are sug-
gested for the load sphere.

We show in figure 17 the TM eigenvalue trajectories for p = 3 where n
goes from n = 1 to n = 4. Numerical values for these k.3 (R:€, = 3)a are
given in table 4(c). Comparison of figure 17 and figure 3 for the TE
eigenvalues for p = 2. i.e.. k) (R:&, = 3)a. show that the corresponding

trajectories are quite similar. They are not as much alike as we just noted
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00

for the TM p = 2 and TE p = | trajectories. There are two knees present in
each set. The TM eigenvalues k3 a show smaller ranges in R, for which
we have a very slow decrease in y,a with increasing R, than we found for
the TE case of k:,'z’ a. The TM trajectories then reveal a succeeding range
over which kf}’ a decreases more rapidly as R increases. with the rate in-
creasing with 2. This rate of variation with R is much slower than we ob-
served in figure 3 for the TE trajectories for ki,'z' a. The next range in R

2)

shows that k.3 a changes slowly with increasing R, but not nearly as

slowly as the TE trajectories did for k. a. For the remainder of the range

of R. both k'3 a and k.« behave about the same. The TM trajectories,
k% (R:€, = 3)a. still can be thought of as displaying three distinctly sized

regimes for the size of the loading dielectric sphere.

Figure 18 gives the calculated set of TM eigenvalue trajectories for p = 4.
Here we show results for n = 1 to n = 4. Numerical values of
k(,,zj (R:€, = 3)a are presented in table 4(d). The same trend we saw for the
TM p = 3 and TE p = 2 eigenvalues continues here. As anticipated. an
CONDUCTING SPHERE OF RADIUS a
CAVITY DIELECTRIC £

CONCENTRIC DIELECTRIC SPHERE

RADIUS b
DIELECTRIC CONSTANT £, = 3¢,

THE TM EIGENVALUES k(3 (R €0

22: (R:€, = 3)a for the spherical cavity of radius a lilled with dielectric € inter-

nally loaded with a concentric dielectric sphere of radius b and strength €, = 3€,.
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RATIO OF RADIUS OF INTERNAL DIELECTRIC SPHERE TO CAVITY RADIUS R=b/3
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THE TM EIGENVALUES K3/ (R £,)a

Figure 18. TM eigenvalues kf,z‘,) (R:€, = 3)a for the spherical cavity of radius a filled with dielectric €, inter-
nally londed with a concentric dielectric sphere of radius b and strength €, = 3€,.

additional knee appears in the curves for the &3 a. The k% a and k'Y a

eigenvalue trajectories again are quite similar, with the TM trajectories

showing much less pronounced emphasis of the features over the succes-

sive ranges of R. Of course, the TM eigenvalue trajectories for kff} a are at

larger ka values than the TE trajectories for .} a.

4.3  The TM Eigenvalues for ¢ = 10.00
We will now consider the TM eigenvalues for the inner sphere of a larger
dielectric constant of €, = 10g,. First we examine the results obtained
from equation (36) for p = 1 and n = 1 to n = 8. These results are the
trajectories plotted in figure 19 and whose numerical values of
kf,z" (R:e, = 10)a are given in table 5(a). Again we begin by pointing out
that for all R, the TM eigenvalues k‘,zl’(R:G, = 10) a lie lower than the TE

eigenvalue &)’ (R:€, = 10) a.

In fact, the TM k‘lz.’ a are the lowest-lying eigenvalues for € = 10. This can
be seen by simply comparing the curves of figures 6 and 19.
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Figure 19. TM eigenvalues kflzl)(R;e, = 10) a for the spherical cavity of radius a filled with dielectric | inter-
nally loaded with a concentric dielectric sphere of radius b and strength £, = 10€,.
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We have a rather involved situation, in which there are a fairly large num-
ber of parameters in relation to which the different eigenvalues can be
compared; i.e., TM compared with TE, g =10 relative to € = 3, and. for
given €, the TM eigenvalues for given n can be compared for different p
values, or for different n values all other parameters kept fixed. In spite of
this complexity we shall try to carry through the comparisons where they
appear significant.
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Continuing, we compare the kf,z,’ (R:€, = 10)a trajectories of figure 19 with Ny o
the k) (R:€, = 3) a trajectories of figure 15. For n = 1, we see they both *
begin at the same value at R = 0. As R increases, they both decrease
slowly at first and then more rapidly, with &Y (R:€, = 10)a having its rate
of change somewhat higher, so that at R = I, we have the ratio

ki (R=1:€,=10)a _ 3
K (R=l:e, =30 Y 10
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Table Sa. Numerical Values of the TM Eigenvalues kf,’ (Re, =10)u

for the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4

0.05 2.74214 3.87023 4.97342 6.06195
0.10 2.73105 3.86993 4.97341 6.06195
0.20 2.64339 3.86052 4.97252 6.06187
0.30 2.44378 3.79690 4.95825 6.05896
0.35 2.31574 3.71348 4.92707 6.04950
0.375 2.24897 3.65122 4.89390 6.03630
0.40 2.18174 3.57298 4.83418 5.99852
0.45 2.04872 3.37092 4.54925 §.53510
0.50 1.92058 3.13335 4.14872 4.99242
0.60 1.68455 2.67539 3.47315 4.16142
0.70 1.47479 2.29613 2.96820 3.55954
0.80 1.28336 1.97686 2.56689 3.09291
0.90 1.09462 1.67147 2.19867 2.68187
0.925 1.04438 1.58649 2.09550 2.56951
0.95 0.99112 1.49106 1.97528 2.43705
0.975 0.93313 1.37652 1.81883 2.25449
0.99 0.89498 1.29160 1.68879 2.08593

Table 5a. (cont’d) Numerical Values of the TM Eigenvalues
k&) (R €, = 10) a for the Spherical Cavity Loaded
Internally with a Dielectric Sphere

R=b/a n=5 n=6 n=7 n=8

0.05 7.14023 8.21084 9.27546 10.33524
0.10 7.14023 8.21084 9.27546 10.33524
0.20 7.14022 8.21084 9.27546 10.33524
0.30 7.13965 8.21073 9.27544 10.33524
0.35 7.13700 8.21002 9.27526 10.33519
0.375 7.13233 8.20844 9.27472 10.33501
0.40 7.10384 8.13416 9.06122 9.96681
0.45 6.40689 7.23980 8.05514 8.85948
0.50 5.76783 6.51605 7.24965 7.97353
0.60 4.80582 §.42951 6.04110 6.64448
0.70 4.11466 4.65122 5.17663 5.69448
0.80 3.58569 4.06005 4.52305 4.97835
0.90 3.13486 3.56829 3.98876 4.40023
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Table 5a. Numerical Values of the TM Eigenvalues
k% (R:e, = 10) a for the Spherical Cavity Loaded
Internally with a Dielectric Sphere
: R=b/a n=5 n=6 n=7 n=8
\ 0.925 3.01614 3.44341 3.85718 4.26132
. 0.95 2.87747 3.30045 3.71001 4.10939
0.975  2.68072 3.09676 3.50308 3.90070
; 0.99 2.48199 2.87605 3.26741 3.65560
. Table Sb. Numerical Values of the TM Eigenvalues %3 (R:€, = 10)a for the
. Spherical Cavity Loaded Internally with a Dielectric Sphere
\ R=b/a n=1 n=2 n=3 n=4 n=5
\ 0.05 6.10160 7.44289 8.72175 9.986755 11.18898
d 0.10 5.98960 7.43678 8.72148 9.96754 11.18898
3 0.15 5.69933 7.39369 8.71724 9.96717 11.18896
y 0.20 5.26552 7.20470 8.68543 9.96260 11.18834
; 0.225  5§.02341 6.94597 8.61675 9.95149 11.18654
. 0.23 4.97386 6.87218 8.58611 9.94672 11.18578
' 0.24 4.87396 6.70551 8.47633 9.92863 11.18322
b 0.25 4.77340 6.52213 8.27290 9.85558 11.17612
¥, 0.26 4.67267 6.33255 8.01299 9.58447 11.06590
- 0.30  4.27969  5.62072  7.00767 8.33831 9.61651
" 0.35  3.84258  4.92412  6.04519  7.15857 8.24588
S 0.39 3.54785 4.50996 5.47705 6.44758 7.41018
N 0.40 3.48151 4.42358 5.36332 6.30471 7.24398
: 0.41 3.41790 4.34339 5.26305 6.18938 7.16024
: 0.42 3.35693 4.26900 5.17761 6.11654 7.14239
) 0.45 3.18869 4.07635 5.00409 6.03773 7.12132
} 0.50 2.95091 3.82869 4.83290 5.94295 7.06296
) 0.53 2.82963 3.70623 4.73435 5.85696 6.98214
. 0.55 2.75633 3.63099 4.66392 5.78179 6.88751
- 0.60 2.59564 3.45729 4.47009 5.52795 6.48720
2 0.65 2.46170 3.29754 4.25768 5.21219 6.02879
g 0.70 2.34909 3.14768 4.03744 4.88694 5.60866
' 0.80 2.17202 2.86919 3.60328 4.28918 4.89480
. 0.90 2.03996 2.60861 3.18883 3.75198 4.28117
0.95 1.98493 2.48136 2.98009 3.47497 3.95896
+ 0.99 1.94417 2.37939 2.80409 3.22212 3.63549
¥
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Table 5¢. Numerical Values of the TM Eigenvalues kf; (R:€, = 10)a for the
Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4 n=5

0.01 9.31621 10.71301 12.06359 13.38012 14.67012
0.05 9.26192 10.71183 12.06357 13.38012 14.67012
0.10 8.85483 10.67402 12.06114 13.37999 14 .60711
0.12 8.55316 10.60966 12.05479 13.37946 14.67007
0.14 8.18958 10.45346 12.03635 13.37748 14.66988
0.15 7.98515 10.29326 12.01612 13.37513 14.66961
0.17 7.54113 9.67286 11.87103 13.36210 14.66807
0.18 7.31408 9.27880 11.53410 13.33712 14.66588
0.19 7.09348 8.89665 11.01897 13.09883 14.65905
0.20 6.88492 8.54797 10.50791 12.49429 14.40867
0.24 6.21966 7.62350 8.97068 10.45512 12.02533
0.25 6.09741 7.49808 8.81040 10.10740 11.55074
0.30 5.69648 7.06652 8.51199 9.88585 11.16333
0.32 5.60586 6.92199 8.37712 9.80510 11.12933
0.34 5.53769 6.78319 8.20939 9.66465 11.04770
0.35 5.50855 6.71509 8.11276 9.55969 10.95706
0.40 5.35337 6.36755 7.53202 8.73223 9.87265
0.45 5.08304 5.96893 6.91103 7.87507 8.82188
0.50 4.73153 5.54339 6.35694 7.17504 7.98944
0.55 4.38900 5.14612 §.89083 6.63380 7.39158
0.60 4.08514 4.79742 5.50468 6.23711 7.07480
0.65 3.82306 4.49806 5.18430 5.93650 6.83130
0.70 3.59977 4.24355 4.91516 5.67488 6.55191
0.80 3.25674 3.84884 4.48193 5.18153 5.91635
0.90 3.04264 3.57702 4.13069 4.70382 5.28066
0.95 2.98287 3.47554 3.97044 4.46826 4.96624
0.97 2.96632 3.43930 3.90782 4.37386 4.83778
0.99 2.95251 3.40466 3.84574 4.27893 4.70625
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Table 5d. Numerical Values of the TM Eigenvalues k:,‘;' (R&, =10)u
for the Spherical Cavity Loaded Internally with a Dielectric Sphere

R=b/a n=1 n=2 n=3 n=4

0.01 12.48495 13.92052 15.31356 16.67415
0.0§ 12.34864 13.91620 15.31346 16.67415
0.09 11.66566 13.83091 15.30744 16.67380
0.10 11.39210 13.75563 15.30059 16.67324
0.1 11.07169 13.61101 15.28721 16.67202
0.12 10.70612 13.30020 15.25973 16.66941
0.13 10.32192 12.73787 15.18674 16.66379
0.14 9.95744 12.08968 14.81789 16.64928
0.15 9.64061 11.52244 13.99140 16.51772
0.16 9.38302 11.10856 13. 18860 15.62409
0.18 9.0332% 10.66961 12.17109 13.93284
0.20 8.83911 10.40660 11.97936 13.37331
0.22 8.72520 10.17569 11.82085 13.31414
0.25 8.56776 9.83956 11.43985 13. 10634
0.27 8.37583 9.58818 11.05765 12.71313
0.28 8.23946 9.44241 10.83503 12.41234
0.30 7.91356 9.10830 10.36626 11.75247
0.35 7.09866 8.22480 9.32598 10.41587
0.40 6.54310 7.56107 8.640535 9.79060
0.45 6.32088 7.20096 8.21410 9.33433
0.50 6.23596 7.00887 7.88291 8.83148
0.55 5.99439 6.73500 7.49604 8.28084
0.60 5.63298 6.34331 7.04389 7.74185
0.70 4.95085 5.58490 6.20868 6.83158
0.80 4.42896 4.99928 5.57003 6.15672
0.90 4.07959 4.59918 5.12427 5.66306
0.95 3.98594 4.47725 4.96790 5.46056
0.99 3.95318 4.41489 4.86623 5.30972
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Thus, all the kf,' (R:€, =10)a and kf,’ (R:€, = 3)a will have the same ratio ::f- X
atR = | for each n. :::::::
"
For n = 1. both trajectories look pretty much alike for € = 10 and € = 3. v 2.'
However. we have already noted that as R increases the k) a values ,_::;
decrease faster for € = 10 than for € = 3. There are some other dis- ;__;r:'
similarities that arise when we compare figure 19 with figure 15. Clearly, :._; 3
for €, = 10, the trajectories decrease slowly with increasing R: the rate " a
decreases as r increases. This was also true of the eigenvalue trajectories o
) (R:&, = 3)a. However, at the knee we observe a much sharper turning S::‘,'.
for the €, = 10 trajectories relative to those for € = 3. One new feature is l::"'-:’.'
that as n increases, for €, = 10, we have a decreasing initial range of R over '*,,'."
which this very slow changing of &g occurs. In addition to this be- -
havior. we observe that the I(L’,’(R:E, = 10)) a trajectories in figure 19, just "’a“_a'.;
bevond the knee, are clearly concave upward. This behavior persists for a :'.-::'..-:;
large range of R and is immediately followed by a region of rapid decrease ;'
in k:,z,'u. as R goes to unity. In figure 15, there is only a hint of this con- Sl
cavity in the K} a trajectories for €, = 3. Note that the & (R:€, = 10)a . ,:.,_:
trajectories somewhat resemble the kl,',’ (R:&, = 10)a trajectories (compare :l:‘\-ﬁ'*
, fig. 6 and 1Y), except near R = 1. :}E‘_
‘ R
In summary, then, our considerations thus far have been to compare the )
b ™ k‘,f,’(R:e, = 10)a to the TE kf.',)(R:E, = 10) a and also to compare the Zj:-j’.
C TM K2 (R:e, = 10)atothe TM k) (R:e, = 3)a. e
f o
Next, we examine the characteristics of the TM eigenvalue trajectories for ;’:"_-'
p=2. kfz' (R:€& =10)a. when n goes from | to 5. The kﬁ’a curves are . f‘
shown in figure 20, and numerical values are given in table 5(b). Compar-
ing figure 20 with figure 7, we see that there are two knees in all the TE
trajectories kfl'z) a, whereas only for n 2 4 do we see two clearly defined

knees in the TM eigenvalue curves for k'3 (R:e, = 10)a. For n > 4, the
TE and TM trajectories are similar, except for values of large R. For n <
3. the k:,zz’(R €, = 10) a trajectories resemble more closely the TE eigen-
value trajectories k',,',’ (R:&, =10)a. There now appears to be a transition
of some sort occurring in the inflection characteristics of the curves as we

vary n.
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Going to higher order in p. we can follow the development of this transi-
‘ 2
tion. Thus. we consider next the p = 3 TM eigenvalues k{3a. The
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Figure 20. TM eigenvalues k‘,,zz' (R:€, = 10)a for the spherical cavity of radius a filled with dielectric €, inter-

nally louded with a concentric dielectric sphere of radius b and strength €, = 10€,.
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trajectories are shown in figure 21 for n = 1 to n = 5. and in table 5(c) are
corresponding numerical values. We first compare the TE trajectories
k") (R:€, = 10)a and the TM trajectories K3 (R:g, =10)a. All the TE
trajectories, as can be seen in figure K. have increased the number of knees
to three for all values of n. Figure 21 reveals two well-defined knees oc-
curing in the TM trajectories for values of n < 4. The n =5 TM trajectory,

f;;’ (R:€, = 10)a, shows just a vestige of a third knee, but at a rather large
value of R.
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Perhaps as n increases much further. the k'3 a will display a clearly de-

fined third knee. If we compare the k'3 a trajectories with the TE trajec-
tories k‘,,'z’(R:e, = 10) a of figure 7. we observe that for n = 1, 2, and 3 the
TM trajectories appear to more or less resemble the corresponding TE
trajectories. Considerable differences are obvious. Again, we appear to

find that a transition in the TM trajectory characteristics is taking place.
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Comparing figure 17 for the kY (R:€, = 3)a with figure 21 for the
k;z,' (R:&, = 10)a. we see that for n = 1 and n = 2. the trajectories are
similar. For the larger values of n this is no longer the case.
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RATIO OF RADIUS OF INTERNAL DIELECTRIC SPHERE TO CAVITY RADIUS R=b/3

Figure 21. TM e¢igenvalues
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THE TM EIGENVALUES &\ (R 10

4]
nl

(R.€, = 10)« for the spherical cavity of radius a filled with dielectric €, inter-

nally louded with a concentric diefectric sphere of radius b and strength €, = 10€,.

For p = 4, we find that the same trends continue for the TM trajectories
k‘,f; (R:€, = 10)a. Figure 22 shows these trajectories for n fromn =1 ton
= 5. Table 5(d) contains corresponding numerical values for the eigen-
ralues kf" (R:€, = 10)a. Let us start by first making the observation from
figure 22 that, for R from about (.5 up to unity, all the TM trajectories
manifest the more familiar behavior as R increases that we had become ac-
customed to. Furthermore. there are three distinct knees in each curve. In
fact. all the familiar features are present in each trajectory. At this value of
p. it seems that the transitioning in the behavior of the eigenvalue trajec-
turies has pretty much been completed. Once again we notice upon com-
paring figure 22 with figure 8 that for the same €, the TM eigenvalues for
the index p are very similar to the TE eigenvalues belonging to the index
one lower in value.

Although we have not calculated k:j,'(R;E, = 10)a for p > 4, we anticipate
that the trend will continue. and the familiar pattern of behavior will result.

We have now seen TM eigenvalues for a substantial range of € > 1 and
the corresponding eftects due to the strength of the dielectric load.
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Figure 22, TM eigenvalues kﬂ(RIE, = 10Ya for the spherical cavity of radius a filled with dielectric €, inter-
nally loaded with a concentric dielectric sphere of rudius b and strength €, = 10g,.

The TM Eigenvalues for e_= 1/3

The final TM eigenvalue trajectories we shall consider are those for which
we interchange the dielectric strengths within the cavity. We now have the
case of €. = 1/3. Figure 23 shows the first set of these eigenvalue trajec-
tories corresponding to p = 1. namely. the k'Y’ (R:€, = 1/3)aforn=110n
=9. Table 6(a) contains corresponding numerical values.

Note first that for all values of R the TM eigenvalues k:,z,' (R:€, =1/3)alie
lower than the lowest TE eigenvalues for € = 1/3. which are the
K\ (R, = 1/3)a.

Just as for the TE trajectories k) (R:€, = 1/3)a (compare fig. 11). the TM
trajectories of figure 23, k'n:,' (R:€, = 1/3)a. display the verv remarkable
feature of increasing very slowly at first as R increases from R = 0, and
changing even more slowly with R as n increases. for an increasing range
of R. Thus. for example. for n = 9. ki,zl’ a changes by considerably less than
one percent as R changes from R = 0 to about R = .65, This is indeed a
very noteworthy feature: the radius of the inner sphere increases to about
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Figure 23. TM eigenvalues AL",’(R:t, = 1/3) a for the spherical cavity of radius a filled with dielectric €, inter- A
nally loaded with a concentric dielectric sphere of radius b and strength £, = 1/3€,. ‘&‘
Table 6a. Numerical Values of the TM Eigenvalues &) (R:€, = 1/3)a for e
. . . . . A
the Spherical Cavity Loaded Intemally with a Dielectric Sphere :,:-‘_:J‘
A
l‘\f Caf
R=b/a n=1 n=2 n=3 n=4 n=5 :,'\:::
0.05 1.58442 2.23449 2.87141 3.49987 4.12241 roras
0.10 1.58674 2.23456 2.87141 3.49987 4.12241 ;2-\-;.-\
0.20 1.60414 2.23682 2.87165 3.49989 4.12241 PO
AT A
0.30 1.64733 2.24998 2.87488 3.50060 4.12256 ot
LN
0.40 1.72508 2.28995 2.89205 3.50723 4.12494 “o
0.50 1.84634 2.37795 2.94671 3.53842 4.14174 AT
IEAAR
0.60 2.01985 2.54163 3.07754 3.63556 4.21074 KACH
Lo,
0.70 2.24474 2.81645 3.34626 3.87599 4.41647 e
B
0.80 2.48256 3.21933 3.84044 4.40321 4.94112 R
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;: Table 6a. (cont’d) Numerical Values of the TM Eigenvalues k) (R:€, = 1/3)a o
a for the Spherical Cavity Loaded Internally with a Dielectric Sphere !.-
L
ﬁ: R=b/a n=1 ne2 n=3 n=4 n=5 :E
e 0.85 2.58072 3.43959 4.17773 4.82901 5.42371 Ry
. 0.90 2.65484 3.63064 4.51880 5.32948 6.07207 ™
0.95 2.70661 3.77138 4.78887 5.76744 6.71068
0.99 2.73699 3.85265 4.94139 6.01218 7.06961

7

Table 6a. (cont’d) Numerical Values of the TM Eigenvalues e
i (R:€, = 1/3) u for the Spherical Cavity Loaded r'
Internally with a Dielectric Sphere w
R=b/a n=6 n=7 n=8 n=9 pd
0.05 4.74053 5.35519 5.96705 6.57660 t:
0.10 4.74053 5.35519 5.96705 6.57660 S
0.20 4.74053 5.35519 5.96705 6.57660 i
0.30 4.74056 5.35520 5.96706 6.57660 j;
0.40 4.74138 5.35547 5.96714 6.57663 A
0.50 4.75004 5.35979 5.96924 6.57763 .
0.60 4.79751 5.39163 5.99017 6.59115 E;‘
0.70  4.96892  5.53187 6.10334 6.68145 o
0.80 5.47133 6.00201 6.53679 7.07704 o~
0.85  5.98466  6.52711 7.06061 7.59089 o
0.90 6.75734 7.39678 8.00117 8.57980 ft
0.95 7.62019 8.49677 9.34098 10. 15346 E}
N 0.99 8.11636 9.15419 10. 18427 11.20746 e
o N
N o
:f- Table 6b. Numerical Values of the TM Eigenvalues kf,zz’ (R:€, =1/3)a for the .

Spherical Cavity Loaded Internally with a Dielectric Sphere

- .'-
'

’_.

R=b/a n=1 n=2 n=3 n=4 n=5 ‘::'.'.
0.05  3.53464  4.29732  5.03551  b5.75477 6.45996 A
0.10  3.55430  4.29879  5.03558  5.75477 6.45906 o
0.20  3.67302  4.33247  5.04234  5.75588 6.46012 b5
0.30  3.89707  4.46871  5.10415  5.77899 6.46766 e
0.40  4.19283  4.74932  5.30765  5.90625 6.53899 b
0.50 4.46870 5.16215 5.71318 6.24962 6.80624 ;~
B
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Tabie 6b. (cont’d) Numerical Values of the TM Eigenvalues k:&) (R:e, =1/3)a :,:-: :
\ for the Spherical Cavity Loaded Internally with a Dielectric Sphere 1{:
R=b/a n=1 n=2 n=3 n=4 n=5 ;_
0.60 4.61418 5.58355 6.30254 6.88120 7.41095 f
0.70 4.74989 5.83512 6.83170 7.67987 8.38242 :$$
0.75 4.91025 5.96067 7.00539 7.98584 8.86366 bt
’ 0.80 5.18611 6.18401 7.20685 8.22912 9.22090 O
) 0.85 5.57252 6.58177 7.57069 8.56728 9.57072 ;:ﬁ:
F 0.90 5.92529 7.08509 6.16141 9.18788 10. 18974 ::::
t 0.95 6.08487 7.37546 8.60637 9.79266 10.94311 iQER
0.99 6.11428 7.43672 8.71029 9.94994 11.16424 h y
' Table 6¢. Numerical Values of the TM Eigenvalues .:‘r
k% (R:€, = 1/3) a for the Spherical Cavity Loaded -
f Internally with a Dielectric Sphere t';x
R=b/a n=6 n=7 n=8 b ';' }
g 0.05 7.15422 7.83968 8.51786 s
N 0.10 7.15422 7.83968 8.51786 S
' 0.20 7.15424 7.83968 8.51786
: 0.30 7.15647 7.84029 8.51802
0.40 7.19311 7.85784 8.52595
\ 0.50 7.38866 7.99383 8.61649
\ 0.60 7.93396 8.46664 9.01445
L 0.70 8.98304 9.52724 10.04568
0.75 9.62647 10.28862 10.87838 g
0.80 10.15707 11.01921 11.79863 o
i 0.85 10.57054 11.55457 12.51114 E:{f;
0.90 11.18270 12.17409 13.16565 o
0.95 12.06366 13.15887 14.23260 P
; 0.99  12.35869  13.53702  14.70191 8
b \::\_::.
Table 6¢. (cont’d) Numerical Values of the TM Eigenvalues E',,:E,:‘
k3 (R:€, = 1/3)a for the Spherical Cavity Loaded Internally \.f: ‘
H with a Dielectric Sphere R
E R=b/a n=1 ne=2 n=3 n=4 :
. 0.05 5.38931 6.18546 6.96492 7.72502
; 0.10 5.44748 6.19321 6.96554 7.72506
E 0.20 5.72571 6.32290 7.00705 7.73533
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Table 6¢. (cont’d) Numerical Values of the TM Eigenvalues :j:
kf}’ (R:€, = 1/3) a for the Spherical Cavity Loaded Internally ‘:‘
with a Dielectric Sphere :.-}_'.
R=b/a n=1 n=2 n=3 n=4 ::::3"_
0.30  6.11831 6.68514 7.24937 7.86803 N
0.40 6.40685 7.20440 7.77256 8.30556 s
0.45 6.47571 7.44291 8.11120 8.65427 T
0.50  6.56969 7.61158 8.44730 9.06910 o
0.55  6.76217 7.74247 8.71475 9.49613 o
0.60 7.08112 7.94254 8.91417 9.84700 e
0.65 7.48305 8.30227 9.17317 10.11814 "
0.70 7.81542 8.79397 9.62997 10.48509 :ﬁ.f
0.75 7.93460 9.17657 10.21325 11.10187 Nk
0.80 7.96052 9.28267 10.53328 11.67875 ¥
0.85 8.14174 9.37617 10.61980 11.85040 i e
0.90 8.71535 9.87300 11.00993 12.14933 o
0.95 9.23482 10.57775 11.86018 13.09449 Eﬁiﬁ
0.99 9.31459 10.70821 12.05511 13.36718 RN
Table 6¢. (cont’d) Numerical Values of the TM "f
Eigenvalues '3 (R:€, = 1/3)a for the Spherical 7
(_Z_zwity Loaded Internally with a Dielectric Sphere ::j,‘
R=b/a n=5 n=6 n=7 ‘;:'.
0.05 8.46980 9.20221 9.92439 o
0.10 8.46980 9.20221 9.92439 :TgA
0.20 8.47191 9.20259 9.92446 iyﬁi
0.30 8.53397 9.22811 9.93390 Lo
0.40 8.86157 9.45259 10.07624 o]
0.45 9.17901 9.72119 10.29060 o
0.50 9.60272 10.11856 10.64437 ]
0.55 10.11024 10.64454 11.15398 -4
0.60 10.62833 11.26444 11.81449 5
0.65 11.04319 11.86359 12.55689 S
0.70 11.39681 12.32197 13.19962 o
0.75 11.94870 12.81932 13.72198 A
0.80 12.70426 13.63031 14.50499 -
0.85 13.05176 14.21104 15.31727 i
0.90 13.29621 14.44773 15.59905 L
0.95 14.28938 15.45194 16.58848
0.99 14.65198 15.91469 17.15903
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:‘I: Table 6d. Numerical Values of the TM Eigenvalues ksz(R;e, = 1/3) a for the Spherical Cavity
h Loaded Internally with a Dielectric Sphere
o R=b/a n=1 n=2 n=3 n=4 n=5 n=6
"'. 0.05 7.23212 8.03807 8.84132 9.62683 10.39723 11.15508
3 0.10 7.34737 8.06208 8.84414 9.62706 10.39725 11.15508
i 0.20 7.79088 8.35000 8.97442 9.67251 10.41008 11.15814
0.30 8.20645 8.93072 9.47653 10.02946 10.62925 11.27669
:. 0.35 8.29921 9.22891 9.84606 10.37672 10.91752 11.49413
.-: 0.40 8.42530 9.44257 10.23331 10.81339 11.33429 11.85969
.'r‘ 0.45 8.69580 9.60117 10.55160 11.28459 11.85562 12.37088
0.50 9.10309 9.86534 10.78236 11.68733 12.41425 12.99682 '
4 0.55 9.52710 10.31643 11.09718 11.99178 12.88249 13.64077 a_
I 0.60 9.74453 10.83041 11.63100 12.40714 13.26524 14.156221 ::
i : 0.65 9.78081 11.09210 12.20129 13.06583 13.84316 14.65510 :-:'"
i .

. 0.70 10.00693 11.16375 12.41521 13.59417 14.60022 15.45226 :;
:" 0.75 10.61125 11.56821 12.60217 13.74771 14.93253 16.07729 '.\
. ‘-
Py 0.80 11.08410 12.30813 13.35163 14.31296 15.29773 16.34951 .a-;
D 0.85 11.14081 12.53845 13.87439 15.13166 16.29569 17.36492 N

‘Fl
:. 0.90 11.41012 12.69611 13.98595 15.27241 16.54870 17.80976 :I"
- of",
- 0.95 12.29011 13.63758 14.92764 16.17285 17.38395 18.57040 5““
\ ; 0.99 12.48354 13.91571 15.30558 16.66232 17.99221 19.29977 -
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2/3 of the cavity radius with almost no change in the eigenvalue of the sys-
tem. As is to be expected, as R increases beyond this range, k'« in-
creases more rapidly with R. This rate of increase is amplified further with
increasing n.  Although this is quite similar to the behavior of the TE
eigenvalues k‘,,',’ (R:&, = 1/3) ¢ as R becomes nearly unity. the two sets of
trajectories display deviant behavior. Whereas the k! a slow up abruptly
for the upper range of R, the ki,z,' a appear to continue smoothly and
gradually.

Increasing p to 2, we obtain from equation (36) the TM eigenvalues
k‘,,zz' (R&, = 1/3)a, whose trajectories for each value of the index n are
shown in figure 24, where n goes fromn =1 to n = 9. Corresponding nu-
merical values are given in table 6(b). Comparison of the TM trajectories
of figure 24 with those of the k',f,' a in figure 23 reveals that for p = 2 a dent
appears in each curve. The dent appears in the midrange of R for n = 1.
As n increases, the range of R decreases over which the dent is present.
Furthermore. the dent moves to higher R values: that is, it is present for
larger inner spheres, as n increases. Finally, we observe in figure 24, at
the higher values of n, the dent in the trajectories ki,zz’ a seems to be wash-
ing out. Again comparing the eigenvalue trajectories in figure 24 with
those in figure 23 we see that prior to the region of the dent, i.e., for lower
R values, the curves are quite similar. However, the initial range of R, for
which the kf,zz’a values seem to change only very, very slowly with increas-
ing R. decreases substantially compared to the corresponding range for the
kf,’ a trajectories. At the upper end of the range of R. we note that the
k2 (R:€, = 1/3)a  trajectories increase  slightly faster than the
K2 (R:e, = 1/3)a curves.

Consider next the p = 3 TM eigenvalue trajectories, k:,23’ (R, =1/3)a, for
n =110 n =7 shown in figure 25. Table 6(c) gives numerical values for
the eigenvalues kf,23’ (R, =1/3)a. A second indentation is now seen in
each trajectory. For n = 1, the dents appear at about one-third and two-
thirds of the range of R. As n increases, these dents move to higher R
value, with the lower-lying one washing out rather rapidly as » increases.
We also observe that the initial range of R, over which each trajectory dis-
plays a very slow increase with increasing R, shortens up as p increases. [t
is also of interest to compare the trajectories for kﬁ,z,' (R:€, = 1/3)ain figure
25 with the TE trajectories for kf,';(R:E, =1/3)a in figure 13. Both sets
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have two indentations. Indeed, both sets are very similar in detail. Note
that the TM eigenvalue trajectories tend to lose the sharpness of the inden-
tation characteristic, compared to those in the TE trajectories of figure 3.

The final set of eigenvalue trajectories calculated from equation (36) that
we consider is the curves plotted in figure 26 for p = 4, i.e., the TM trujec-
tories k&2 (R:€, = 1/3)a for n = 1 to n = 6. Numerical values for these
eigenvalues are in table 6(d). Each eigenvalue trajectory now has three in-
dentations, each successively shifted upward in R in quarterly intervals in
R. Just as we saw for the lower values of the index p, the distinctness of
these indentations in the trajectories fades out as n increases, with the

.
« 5 0

At

lower ones fading faster for a given value of n. Again we observe that the R
el . . RGNS
initial slow increase with R for the early range of R has decreased as we ::-\.-__"
increase p. We further see that increasing the index p results in predictable s :-:}
. 2 . . . BN
changes in the k\Ja trajectories.  Finally, we can compare the NN
2 . . . . i
k%) (R:€, = 1/3 ) a trajectories of figure 26 with the TE &y, (R:€, = 1/3)a ) g
. . . N . "ot
trajectories of figure 14. Clearly they look very much alike. Notice that t;_-'”
the TE trajectories are shifted up in ka relative to the TM trajectories. iy
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Figure 24. TM eigenvalues kf,zz) (R:€, = 1/3) a for the spherical cavity of radius a filled with dielectric €, inter-
nally loaded with a concentric dielectric sphere of radius b and strength €, = 1/3€,.
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nally loaded with a concentric dielectric sphere of radius & and strength €, = 1/3€,.
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Further increasing the index will add additional indentations to the trajec- "
tories. Otherwise, the trends already discerned will merely continue to "
manifest themselves. This will be the case if the dielectric system is the
same. Changing the relative dielectric strengths with €, < 1 may introduce
some new variations in the cigenvalue trajectories. Since we have not in-
vestigated this aspect of the cigenvalue problem for the generic system
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studies, we shall not go any further into this.
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. S. Summary and Discussion >3
Ay i
L)
5.1 General Summary T
. We have examined a verv large number of eigenvalues calculated from .3‘.
. , . . -
equations (32) and (36). We shall now summarize briefly the general )
characteristics we have found for these eigenvalues. First. for € > 1. all Py v
» the eigenvalue trajectories are monotonically decreasing as R in-
, creases—i.e., as the inner load sphere increases in size. On the other hand. o)
L for relative dielectric strength €< 1. the eigenvalue trajectories increase N
. . . . . v
Ko monotonically as the inner sphere grows. Increasing the index p by unity N
') ' adds a knee to the TE as well as TM trajectories for € > 1. Although for o
- large €, the TM trajectories do not always show this knee, it is present for 2
3 small enough n. For € < |, an identation is added instead. -':\
& N
". . . . . >
~ Note that the knee and the indentation shift the trajectory toward lower ka N
i values for TE and TM eigenvalues, but preserve the monotonicity of the =
rajectory. R
. trajectory iy
N 03
o We have seen that regardless of the size of the internal sphere loading the ﬁ:
. . . . . . . .
R dielectric-filled spherical cavity, and for the chosen values of the dielectric :n."‘
T . . . '
strengths of the load sphere and the medium filling the cavity, the lowest-
¥ lying mode, or fundamental mode, of the system will be the TM eigen- f
) -
o value k\¥ (R:€) a. o
¢ ' '.-;
Ly . . . . . RO
he Some quite remarkable behavior is manifested by the eigenvalues as the P;'
size of the inner dielectric sphere loading the cavity varies. We observed ,. .:
e short and long ranges in the size of the inner dielectric sphere for which ::-::
- . . . . . . .
L the eigenvalue exhibits virtually no significant change at all, as well as T
._:: such ranges of R over which the eigenvalue changed at a very rapid rate. e
» . » ~ . e
For many of the higher order eigenvalues several such regions of behavior Y
. have been seen following one after another. This is an unanticipated ,,::'_
o . . N
- characteristic for the cavity system. AN
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5.2

It is of interest to compare the rich variety of behavior seen for the eigen-
values of the dielectric loaded cavity with the homogeneously filled con-
centric conducting cavity eigenvalues |1]. Clearly for small values of R,
as is to be expected. the two different cavity systems show the same kind
of behavior. Except for lower order TM eigenvalues kf,’ a with € > 1. the
eigenvalues for the two cavity systems are markedly different in their de-
pendence on R, the size of the inner interface radius.

Up to this point, we have constrained all our considerations to individual
families of eigenvalue trajectories for the different €, values: i.e., we have
fixed the index p and examined the set of curves for various ranges of the
index n. One very clear feature of these sets is that the curves in each fam-
ily of trajectories do not intersect. Unfortunately. this does not yet give a
complete enough picture of the eigenvalue trajectory characteristics. We
shall now proceed to consider the features of the eigenvalues and their
variations as R and €, change by superimposing, for each given €. first all
the TE and then all the TM eigenvalues.

Overview of the TE and TM Eigenvalues for €_ = 3.00

We have redrawn in figure 27 a superposition of the previously given 17
TE eigenvalue trajectories for the inner sphere of dielectric constant €, =
3¢,. It now is immediately evident that many of the trajectories do inter-
sect one another. It is very important to emphasize that each point of inter-
section of any two eigenvalue trajectories represents a degenerate pair of
eigenvalues. And this degeneracy occurs for the given values of g at spe-
cific sizes, R, of the internal load sphere. Figure 27 shows explicitly only
TE-TE intersections.

Let us begin a systematic examination of the patterns associated with the
intersection points of the eigenvalue trajectories for the k:,'p’ (R:& =3)a.

We first note that for €, = 3, k@ and k3 a are not degenerate with any

other TE eigenvalues. However, k(z',’ a and k‘,‘; a approach each other at the
single knee of k(;,’ a, and the bottom of the second slow decrease with ris-
ing R in k(,'z) a with increasing R. In fact, we observe this as a general pat-
tern with k! a lying close to k., ; a in the corresponding region. As n in-
creases. this separation decreases. Thus, at n = 5 the two trajectories al-
most intersect one another. Although it is not explicitly shown forn > 5, a
pair of intersections will indeed occur in this corresponding region of R

and. as n increases, the pair of intersections will move apart. This same
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for the pairs &\ a and £'", ., a starting, for €= 3, with n = 2 and for ali p.
p np n—1p+l g r

A similar characteristic also oceurs for the trajectories of k‘z'z’ a and k(,'1' aa
the second knee and the region of R corresponding to the third slow
decrease as R increases. This will be true in general for the pairs of trajec-
tories k,,, @ and k", ,,, « for n 2 2. Clearly for the higher order trajectories
this pattern of behavior will be repeated at larger R values corresponding
to higher lying knees on k..

np

a and higher lying, slowly varying regions of
ki,l_’l',,ﬂ d.

Next consider the eigenvalue trajectory pair of &\%a and &\\'a. It is plain
to see in figure 27 that they are degenerate at two quite distinct values of
R. What we are seeing is that there are two sizes for the inner dielectric
sphere at which the system has k‘,'z' d =k§',' a. One is at R just under 0.6
and the other is at R just under (.7. After a little study of figure 27. we ob-
serve that, for n > 1, the trajectories for &y a and K., a are similarly
degenerate at higher R values. in pairs of R. Clearly these eigenvalue
trajectories are degenerate at two and only two R values.

CONDUCTING SPHENE OF RADIUS »
CAVITY DIELECTAIC ¢,
CONCENTRIC DIELECTAIC SPHERE

RADIUS b
DIELECTRIC CONSTANT £, = 3¢

v .‘-*

THE TE EIGENVALUES Ky (0. €10

Figure 27. A composite of the TE eigenvalues kﬁ.‘r’(R;s, = })a for the spherical cavity of radius a filled with
dielectric €, internally loaded with a concentric dielectric sphere of radius b and strength €, = 3€,.
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It should be noted that the trajectories for k% g and &{\ a intersect at only N
the two points already indicated and the trajectories have no other ::';_:
degeneracies. The trajectories for k), a and k%) a behave in the very same “»
manner. From this point on, the trajectories of higher crder radius will ;:':\'-'
o9

display a larger number of degeneracies. Thus the trajectory for k¢ u in-
tersects that for ki a twice and that for k\Y a twice. The kY a trajectory
also intersects the k‘,'; a trajectory four times. This degree of degeneracy
becomes high rather rapidly. Thus for example. the trajectory for k| a is
degenerate with the Ky} a trajectory for six different sizes of the inner
dielectric load sphere. It should be evident that as ka exceeds about ku = &
for mid-range values of R. the density of TE-TE degenerate modes can be-
come rather large.

Before leaving the TE eigenvalues for € = 3. we point out a very impor-
tant feature. Although the charucteristics ot the eigenvalue trajectories
may become quite interesting in detail for ) < R < 1, the sequence of
eigenvalues at R = 1 is exactly the same as the sequence in which the
eigenvalues occur at R = (. In general there is a downward shift in the ;
eigenvalues as R increases from zero up to unity.

Next let us examine the twenty-one TM eigenvalue trajectories which

were expounded for € = 3 in about the same detail. We first observe that
the eigenvalue trajectories kﬁ’a and k‘;",’ a exhibit no degeneracy whatever:
K a has only two degenerate values, both with k{2 a. Note that k{2’ ¢ also

has two degenerate values, both with &\3a. But &Ja also has two

degenerate values with k‘zzz’ a for a total of four degeneracies (at values of R

of about 0.1, 0.4, 0.8, and 0.99). The trajectory for k‘,zz'u exhibits four

AN

-1

Y
B
x
s "

S .

. 2 . . A
degeneracies and that for k55 a also shows four sizes of internal sphere at e
LA

Py

which degenerate eigenvalues occur. As we go to higher order indices n.p R
. . . BN
the number of degeneracies rises rather rapidly. Thus k;z,’a has two ooy

degeneracies with each of the trajectories for k3 a, &\3 a. and k2 a for a e
. D

total of six degenerate sets. R
N

5 SN

Now we observe that for values of ka > 7 the density of TM-TM :_:;_
-\-.-. -

degeneracies can become rather large. This holds for nearly the entire
range of R. Again we note that the sequence of TM eigenvalues at R = () is
preserved at R = | regardless of the behavior over intermediate R values.
A general shift to lower ka values is evident for the eigenvalues as R
increases.
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We have thus far only separately considered TE-TE and TM-TM he
degeneracies. The complete picture requires taking into account TE-TM
degeneracies for €, = 3. We now proceed to consider this aspect of the
eigenvalue distribution. We will carry this out without attempting to show
a superposition of all the TE and TM eigenvalues in one figure.

Now the only eigenvalue trajectory that does not have any degeneracies is
that for the TM k{'a. The TE eigenvalue |} ¢ and the TM eigenvalue
k‘zz,’ a are both degenerate, intersecting at about R = (.45 and at about R =
(.8. These are the only degeneracies for these eigenvalues. These two

eigenvalue trajectories are the next lowest lying ones, with k2’ a lying be-

low k‘,',' afor0 <R < 0.45and 0.8 <R < | and interchanging their order
for the intermediate range of R. The trajectory for the TM eigenvalue 5} a
is not only doubly degenerate with the TM eigenvalue &3 a, but also inter-
sects the TE eigenvalue trajectory )}’ a twice, first at about R = 0.5 and
then at about R = ().85. The order of occurrence of these eigenvalues at R

= () is preserved at R = 1. In the intermediate range of R, examination of e

'

e
figures 27 and 28 shows that their order changes as R increases. Inspec- ~','.:::;,
tion of figures 27 and 28 shows that once we get beyond the TM eigen- f.ﬂ:
values &% a and k' a and the TE eigenvalue £\\a a considerable amount e
of degeneracy appears, along with shifting around in sequence of the ,__:_.
higher order eigenvalues. Furthermore, as ka increases into this region, i

there appears a rapid rise in the density of the combined TE and TM eigen-
values. Careful inspection of the figures reveals a considerable regularity
in the occurrence of intersections of the set of combined trajectories. We
will not elaborate any further on this subject.

Having seen the considerable complexity in the set of combined TE and
TM eigenvalue trajectories for € = 3, we next tum to considering the
changes that result from varying the strength of the dielectric sphere load-
ing the cavity.
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Figure 28. A composite of the TM eigenvalues kf‘i’ (R:€, = 3)a for the spherical cavity of radius a filled with
dielectric €, internally londed with a concentric dielectric sphere of radius b and strength €, = 3€,.

Overview of the TE and TM Eigenvalues for €, = 10.00

Next we shall examine the superposition in figure 29 of the set of twenty-
two TE eigenvalues, which we considered individually earlier. We now
assume the inner dielectric sphere to be of strength €, = 10¢,. In figure 29
for g, = 10, we see that only the eigenvalue trajectory k}\ a has no intersec-
tions with any other TE trajectory. Recall that for € = 3 there were two
such eigenvalue trajectories.

The &)’ (R:€. = 10)a trajectory nearly coincides with the &\ (R:€, = 3)a
trajectory for the approximate range 0 <R <0.15. For higher R values, the
kﬁ',’ (R:€, = 10) a trajectory lies lower. We also note that the eigenvalue
trajectory for k\ a at its knee lies near the eigenvalue trajectory for |5 a
just beyond its first knee and where it begins its slowly decreasing region
with increasing R. This is true in the same R region in general for the
eigenvalue pairs k' @ and k') a for all n 2 1. Although we have not ex-
plicitly shown it in figure 29, there will be a value of n where this set of
trajectories intersects and continues to do so for all higher values of the in-
dex n. Many similar pairs of trajectories exhibit this same behavior, as can
be seen by careful study of figure 29. We shall not go into this in any fur-
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Figure 29. A composite of the TE eigenvalues &
dielectric €, internally loaded with a concentric dielectric sphere of radius b and strength €, = 10€ .

ther detail. We shall instead examine a further complexity in the
degeneracy of the eigenvalues.

The TE eigenvalue trajectory k3, a intersects the TE trajectory for k\Y a for
two sizes of internal dielectric sphere load—at about R = (.15 and at about
R = 0.25. Note that k5 a shows TE-TE degeneracy only at these two
values. The eigenvalue trajectory for k',',’a has two points of degeneracy
with the trajectory for k”z' a—iat about R = .13 and R = 0.35. It also has
two points of degeneracy with the trajectory for k3, a—at about R = 0.2
and R = 0.3. Thus the eigenvalues k{)a and k\}a each have TE-TE
degeneracy at four sizes of internal sphere load. Note that the points of
degeneracy for these occur only for relatively small internal spheres. The
situation really increases in complexity very rapidly as we go to higher or-
der eigenvalues. Thus the eigenvalue k' a displays six TE-TE degenerate
situations, and k) @ also shows six such degeneracies. The eigenvalue
kS a shows 10 TE-TE degeneracies. Clearly the number of TE-TE degen-
eracies is growing rapidly. We note that up to about ka = 7, the density of
TE-TE degeneracies is rather substantial, but only for R values up to about
0.5. For higher ka values, this high density of TE-TE degeneracies
spreads to much larger R values. What we are seeing is the general
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AADIUS b
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tendency of the eigenvalues 10 move to lower ka as €, increases, with the
higher order trajectories moving farther.

Figure 30 contains the superposition of all the twenty-three TM eigenvalue
trajectories. k‘,s,’(R:E, = 10) a. which we examined earlier in sets of eigen-
values for fixed index p. Let us examine figure 30 for TM-TM
degeneracy. The first feature to note is that only one eigenvalue trajectory
does not intersect any other. namely. the i} (R:€, = 10)a. Thus, in going
from €, = 3 to € = 10, the number of eigenvalues that have no trajectories
with TM-TM degeneracy is reduced from two to only one. The eigen-
value curve k5 a, which exhibits no TM-TM degeneracy for €, = 3. now
{ has, for € = 10, degeneracy with k‘,zz’ (R:&, = 10)a at about R = 0.35 and R
= (1.65. These intersections are the only internal sphere radii at which k(f; a
has TM-TM degeneracy. There are four TM-TM degeneracies for kfl’a.
Two are with k‘,zz’a near R = 0.25 and R = 0.95, corresponding, respec-
tively. to a small and a large load sphere in the interior, and two with k‘f:’ a
4 are at about R = (.30 and R = (.55, corresponding in both instances to
intermediate-size inner dielectric spheres. Next we see that the trajectory
of eigenvalues k5 a has six points of intersection, with a total of three
other TM eigenvalue trajectories. (There are two degeneracies with each
r of kS a. ki a, and k¥ a.) Also. the degeneracies occur for inner load
spheres whose sizes spread over almost the whole range of R. It is of in-
terest also that for small inner spheres up to about R = (.10, the eigen-

2 2
values k) a and £{3 a are very close to one another.

s Going up in order. the eigenvalue k{3 a has a trajectory with eight intersec-
: tions with other TM eigenvalue trajectories. It has two intersections with
L each of K3 a, k% a, k3 a, and kF a. Again, we can readily see that these
E degeneracies correspond to inner sphere radii almost over the whole range
of R. From about R = 0.60 to about R = 0.70, & a and k{3 a are very
nearly equal. Thus we see the feature of two ranges in R for which the
eigenvalue trajectory for k(f,‘a is close to degeneracy. If we continue to
examine the higher order eigenvalue trajectories. e.g.. k%' a. we find N
] twelve TM-TM degeneracies of a large variety of characteristics. Clearly
I the TM-TM degeneracy picture is becoming considerably involved rather
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Figure 30. A composite of the TM eigenvalues kf,f,’ (R:€, = 10)a for the spherical cavity of radius a filled with
dielectric €, internally loaded with a concentric dielectric sphere of radius b and strength €, = 10€,.
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Several novel features are apparent in figure 30. Degeneracy i rather
common for inner dielectric spheres that nearly fill the entre cavinn I
also occurs frequently for quite small inner spheres that load the .
These features were already present for € = 3. but are more emph.

for the higher € case. There are substantial ranges of R for whict ne.
TM-TM degeneracy occurs. The density of intersections of TN tre.
tories becomes quite high rather soon. Many other regular features can he
discerned in figure 3() which we shall not explicitly elaborate on. Finalh
we again note that the order of the eigenvalues near K = () is presenved in
the limit as R goes to unity. The general property of a downward shift of
all trajectories to lower ka with increasing €_is evidentat R = 0.

To get a much more thorough picture of the complicated situation that oc-
curs at € = 10 really requires that a single figure containing all forty-five
TE and TM eigenvalue trajectories superimposed be available for a de-
tailed analysis. Obviously such a picture would be a highly confused one.
losing clarity and accuracy of detail rather quickly. What we shall use as
an alternative mechanism to acquire the more complete overview of the
whole TE and TM situation is simultaneous reference to both figure 29 for
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the TE eigenvalues and figure 30 for the TM eigenvalues, for € = 10. In ;_"

this manner, we can study all TE-TE, TE-TM, and TM-TM degeneracies :"‘ i

at once. Y,

) ‘;

At the outset, we note one very striking characteristic. The TM eigen- -: :

values of kﬁ’ (R;e, = 10) a, which are the lowest for all R, are the only E )

ones not degenerate at any value of R with any other eigenvalue. This _

property is not new by any means. What does arise now is the feature that f-_i'_:j

over the range of R from about R = (.43 to about R = ().65 the trajectory :-_Z‘;

for k% a lies very close to the TE eigenvalue trajectory for ki a. This -

raises an interesting and important question. Namely, if we take €, suffi- o

ciently larger than €,, can we eventually attain degeneracy even for what f

so far has been the lowest eigenvalue, i.e., k‘lzi’ a? Indeed, it can be demon- :;'

strated that for € = 100, for example, the k|, a curve intersects the k{7 a 2

curve at two values of R (at approximately R = 0.15 and R = 0.92). Thus, a7

for this case, all the modes are degenerate for some size of inner dielectric ;‘?

sphere that we load the cavity with. Furthermore, when € = 100, the ::;f

TM,, mode is the dominant mode only, for small and large values of R = :::"'

bla. In the intermediate range of R, which is bounded by the two s

TE,;-TM,, degeneracies, the TE,, mode surplants the TM,, as the domi- 2‘)-

: ! »
nant mode! ?: '
e

It can be further inferred that there exists a value of €_between 10 and 100, 7

at which the kﬁ',’a trajectory just grazes the k(,zl)a trajectory, thus producing o

only one value of degeneracy, and becoming the bounding €_below which -

only the TM,; mode can be the dominant mode, independent of R. If one :: ,

wishes to generalize further, "grazing” values of € should exist for the 'Z::_'

other degeneracy intersections as well. It would not be a difficult exercise .j':\

to solve for these "grazing" values of €, although we have not addressed .:::‘

that particular study for this report. L

ot

oy

Continuing to investigate the situation for € = 10 with regard to o

degeneracy as we have earlier, we find that the TE eigenvalue curve &} a “R

is degenerate only with the TM curve k(zz,’ a near R = 0.2 and near R = (.95, ,:_.

i.e., for a small and for a quite large inner sphere. The TM eigenvalue o

curve k‘zzl’a is degenerate with other modes for six distinct inner sphere '-:,-

_ sizes. In addition to the degeneracies with the TE mode &\ a, it is twice o

> degenerate with the TE mode &5\ a and also with the TM mode k3 a. Note ; ‘
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\"; that the lower R values (about R = (.35) at which the k‘:‘,' a and k',zz’ « oceur P
are nearly equal. g
, e
"% : : : @) '::
?:. Proceeding to higher order, the TM eigenvalue curve /fi‘l a has %
o degeneracies at 10 values of R. In addition the trajectory for k5, a nearly -
coincides with several other eigenvalue trajectories for several ranges of R. &
o Thus once we get beyond about R = ().1, the density of degeneracies grows A

__- very rapidly. Further, as we go to higher order eigenvalues, this lower .-",-"'
::; threshold in R decreases steadily. Clearly for €, = 10 we find a very dense :::ff
” distribution of degeneracies and a rich variety of near degeneracy as well. '_'-:::
N Again, the sequence of TE and TM eigenvalues near R = O remains in-
e variant as R approaches the limit of unity, although many interesting varia- N
y N tions in behavior occur in between these limits. Recall also that all the TE ;: '

N and TM eigenvalues decrease monotonically as R increases from zero to N
e unity, where the inner sphere fills the entire cavity. The general ‘.::"
downward shift to lower ka, for all the trajectories, which is larger for 5.
,. larger €. tends to increase the density of degeneracies for R > (). ;y
% e,
G We have now accumulated a considerable body of knowledge concerning :,\.;
the degeneracies in our system and the effect of increasing € on them. ’QA_

, Next we consider the corresponding situation, where we fill the cavity -
o with a high dielectric medium and then load it in its interior with a con- ;:'_,’,-
o centric dielectric sphere of lower dielectric strength, i.e., € < 1. We :hall
oh examine the results only in the single case of € = 1/3. -

3
- 54 Overview of the TE and TM Eigenvalues for ¢_= 1/3 :::?.

! We shall begin as before, by first examining the TE-TE degeneracy situa- ::: )
) "' tion. Figure 31 contains in superposition all twenty of the TE eigenvalue -\.:: )
19 trajectories we examined as single sets of curves for fixed values of the in- ;

) dex p. Unlike what we observed in figures 27 and 29, we now see that the "
Z:j'- first three TE trajectories, k(l',’a, k‘z',’ a, and k;',’ a, are free of degeneracy for ::j‘:.
.:‘,: all R. Furthermore, these eigenvalues are well separated from all other TE :'_:j:.:
\:: eigenvalues for the entire range of R. The kf,‘,’ a curve shows the first :'_'.'_'-j
N degeneracy. Its trajectory intersects the k‘llz’ da trajectory at about R = (.5 '3
e and again at about R = (.85. The eigenvalues of k;"’ a are degenerate at '“S
w four values of R—twice with k\) a and twice with k})a. All the TE-TE o
‘_j: degeneracies cited thus far are well separated in R from each other. The :j:;:
" trajectory for the eigenvalues k‘,lz’ a shows six sizes of inner sphere at v

which degeneracy occurs. There are two values of R for each of .
N %
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K a, k4 a, and 4} a at which these intersections lie. The %' d trajectory

also has six degenerate values of R, two with each of the trajectories for
kS a and kg,)a, and although it is not explicitly shown, two more with
K\ a. The kS a trajectory intersects k5 a twice and k\} a twice.

The k4 a and &%) a trajectories are nearly coincident for R, ranging all the
way up to beyond R = 0.3. Similar behavior exists for k}\'a and k) a.
There are six degenerate R values for kY, a, two with each of k! a, &} .
and kg‘z’a. The next trajectory, k\%a, has eight values of R at which
degeneracy occurs. We can observe that the density of degenerate pairs of
eigenvalues increases with increasing orders of n and p, but at a slower

rate than we saw happen for € > 1. Indeed, up to ka = 6.5, very little

e

»

degeneracy can be found. Inspection of figure 31 reveals that as R in- .
creases the eigenvalues are shifted, in general, to higher values. Again we i
note that the sequence of eigenvalues at R = () is preserved at R =1. r::_

‘:.:‘\

Next we examine the thirty-one TM eigenvalue trajectories for € = 1/3 all

2
superimposed in figure 32. We begin by noting that the four lowest order T
: . ) (2) 2 Q) .. , , ~
TM eigenvalues of k7 a, k3 a, k3y a, and k4y u are not degenerate for any ;:,:
10 L ' o=
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Figure 31. A composite of the TFE eigenvalues kf,’,,)(R:s, = 1/3)a for the spherical cavity of radius a filled with

dielectric €, internally loaded with a concentric dielectric sphere of radius b and strength €, = 1/3€,.
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values of R. Further, there is a clear separation of all these eigenvalues for

1 all R values, with several exceptions. One exception is for R near unity,

! where k' a is very close in value to k(,zz’ a. The second exception is for the

5 range of R up to about R = (.15, where k¥’ a and k{3 a nearly coincide in

. value. The TM eigenvalues &% a and k{3 a are degenerate with each other

.t at two R values, the lower at about R = (.4 and the upper just under R =
I 0.9. The eigenvalue trajectory for k3 a also shows two inner sphere sizes
: where degeneracy occurs. These are at the values of R about R = (.45 and
’ at about R = (.95. Both of these intersections are with the trajectory for

v the eigenvalue k(222) a. In addition to these two degenerate R values with
v . 2 . 2
? k},z,' a. the eigenvalues k53 ¢ have two degenerate values of R with Kila.

These latter R values are at about R = 0.55 and R = (0.95. The values at
which the degeneracies occur for each eigenvalue are well separated in R.

£
‘sl"" .

»
g

The trajectory for k‘f,’a for six values of R is degenerate with other eigen-

values. These include two trajectory intersections with k‘,ﬁ’a. One is at :«'
about R = (.05 and the other very close to R = 1.0. Two more are with X
- N
kY a—one near R = 0.4 and the second near R = 0.95. The remaining two :.'.’
values are the degeneracies with k(zzz’a already indicated. The eigenvalue YA
o ‘e
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trajectory k%’a also has six sizes of inner sphere at which degeneracy ex-
sists with other eigenvalues. Two with k'fl' d have alreudy been pointed
out. Two more occur with each of two eigenvalues from kg a and k4 a.
These are well spread out over R values from ().5 up to 0.9. All higher or-
der eigenvalue trajectories will show increasing numbers of R values at
which degeneracy occurs with a larger number of other eigenvilues. Ex-
amination of figure 32 shows that above ka = 6 the density of degeneracies
grows rather rapidly. Furthermore. we see in figure 32 the increase in fre-
quency of occurrence of ranges of R over which many pairs of eigenvalues
nearly coincide. These ranges are uite large in many cases.

As we expec*, the order of the TM eigenvalues at R = (J is preserved at K =
1. There is present a general upward shift in the eigenvalue trajectories for
R >(fore < 1. Werecall that now all the eigenvalues are monotonically
increasing as R increases. Many other interesting features are present in
figure 32 showing all the TM trajectories for € = 1/3. We shall not go any
further into this subject, but shall instead go on to consider the composite
of all fifty-one eigenvalue trajectories for g = 1/3.

For obvious reasons, we do not include such a superposition plot of all the
eigenvalues. We can analyze all the eigenvalue trajectories by simul-
taneously examining figures 31 and 32.

The very first observation to be made is that the TM trajectories k(,zl’ a and
k‘zz,’ a are nowhere degenerate with any other eigenvalues for any R value.
For all R, the eigenvalues of %' a and K2 a are well separated from all
other eigenvalues. The TE eigenvalues of k‘,',)a and TM eigenvalues of
k;zl’ a, which respectively had no TE-TE and no TM-TM degeneracy, inter-
sect. There is TE-TM degeneracy of these two curves at about R = (.55
and at about R = 0.9. Now we note that the TE curve &5, a has two values
of R at which it is degenerate with the TM curve kgz,’a. These values near
R = 0.5 and near R = (.97 are the only degeneracies in k(2'|’a. The TM
eigenvalue kf,zl’ a is also degenerate at only two values of R, near R = (.5
and R = 0.97. Both degeneracies are with the TE eigenvalue curve k%) a.
As we have already noted, &\« is nearly coincident with k{3 a for R up to

about R = (.15 and again near R = 1.

There are four R values at which the TM eigenvalues of k‘,zz’a are
degenerate. Two are with the TE eigenvalues of )} a at about R = 0.35
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and also at about R = (.7, and two are with the TM eigenvalues of kf,’ a at
about R = 0.4 and about R = 0.9. The k3 a trajectory is degenerate at four
R values, the two already referred to with } ¢ and two others with the
eigenvalues of k‘f,'a at about R = (.5 and R = 0.98. Four degeneracies ex-
ist for k& a. the pair already mentioned with the TM curve {3 a and the
two with the TE curve k&',’a. From this point on, the higher order eigen-
values show rapid increase in degeneracy. The density of degeneracy very
quickly becomes high beyond ku = 4. In addition, many eigenvalue trajec-
tories are nearly coincident with other eigenvalue trajectories for various
ranges of R. Some ranges of R are quite extensive where this situation oc-
curs. Thus, for example, the TE curve k§' and the TM curve k' a are
nearly coincident for values of R from zero up to about R = ().5.

All the € = 1/3 trajectories increase monotonically with R. Finally, we
state the expected condition that the sequence in which the eigenvalues are
ordered at R = 0 remains invariant at R = 1. As usual, there are many in-
teresting features present in the complete set of eigenvalue trajectories for
€, = 1/3 which we shall not go into explicitly.

Final Summary and Discussion

We have analyzed the results of solving equations (32) and (26) for the TE
and TM eigenvalue trajectories, for a dielectric-filled spherical cavity
loaded with an inner concentric dielectric sphere.

By choosing the inner dielectric sphere of higher strength than that of the
cavity dielectric for various values of € > | and reversing the roles of the
dielectrics and thus obtaining € < 1, we studied the effects of eigenvalue
trajectories. The specific values chosen for £ were 3.00, 10.00, and 1/3.
These constitute a reasonably large range for €. For values of €, > 1 all
the eigenvalues decrease monotonically as the radius of the inner sphere
increases. On the other hand, for € < 1, all the eigenvalues increase
monotonically as the radius of the inner sphere increases. In all cases of
€,, although the eigenvalues display some very interesting behavior for in-
ner sphere radii between R = () and R = 1, the eigenvalue sequence of R =
0 is preserved at R = 1. Comparing two cases of € > 1, we find a general
shift of the eigenvalues to lower values, for R > 0, for the higher €_case
relative to the lower € _case. For two values of €_< 1, the reverse situation
holds true. Varying €_induces a multitude of changes in which modes of
the system are degenerate and for which values of radius of the inner
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1,
2
o
:; sphere the degeneracy occurs. Further varying € affects the density of
degeneracies among the eigenvalues. ci
e A
‘ A number of practical applications of the results of this study suggest o~
;:':‘ themselves. For example. we see explicitly for the simple system studied ‘.:
Ky that the characteristics of an empty cavity and a loaded cavity can be enor- :
mously different.  We shall show in subsequent reports that the interior 'Y
A contents of a cavity can be sensed in the far field. The results reported on
N in this paper indicate that, if we appropriately add elements to the interior
':C of the cavity, identification of the cavity and its interior components can be
» made very difficult. Thus we noted that adding a dielectric sphere of high R
- strength inside shifts many high order modes to lower values. This gives v
W rise to confusion in the array of resonances in the cavity rather than the N
;' simple response of only a few resonances. We also see analytic proof of : ‘
"'\ the large number of resonances that enter into the cavity response when :::
' the cavity contains even a very simple element. The resuits of this study %*
- show that it can be very difficult to achieve and maintain EMC and EMI i
- hardening of systems by introducing protective devices for selected fre- r‘
j A quencies because of the large number of frequencies that must be account- ‘?.:
"’ ed for when even simple elements are in the interior of metallic shields. '.:';
We have further shown that the well separated lower modes of systems ;_
-;'.' can be shifted to higher frequencies if we coat the inner surface of the ex- \:
:. terior metal boundary with high dielectric strength materials. We have by \'.
;"_; no means exhausted all possible application potentials of this study. ::':.-:
]
o One final important area of application that suggests itself in this study is -
- that of the difficult mode conversion problem. Using the work of Rowe :::.
; - and Warters | 3] and that of Kindermann |4], Doane |5] showed how the :-j_"
" degeneracy of the TE,; and the TM,, circular waveguide modes could be I',
used to convert from the first to the second. The high degree of flexibility o
- we have seen in controlling degeneracy among the many modes in the g
"": study we reported on presents us with an opportunity to develop an addi- :::
'5 tional mode conversion capability. :ﬁ\-
::: -.'l'-:
- We conclude the discussion by pointing out that one can achieve a deeper
'_i understanding of what we found in the study reported on here by studying
. the behavior of the spatial distribution of the field components in our sys-
(‘; tem. This will be presented in a series of subsequent reports.
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ATTN LIBELO, L., SLCHD-NW-RI (30 COPIES)
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